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ABSTRACT

Subband decomposition has been shown to be a useful tool for
spectral estimation, in particular when parametric methods have to
be considered. Indeed, the loss of observed samples due to deci-
mation can be compensated by the use of a suitable model, if avail-
able. This paper studies a Subband Multichannel Autoregressive
Spectral Estimation (SMASE) method. The proposed method de-
composes the observed signal through an appropriate filter bank
and processes the decimated signals by means of a multichan-
nel Autoregressive (AR) model. This model takes advantage of
known correlations between different subband signals. This a pri-
ori knowledge allows to improve spectral estimation performance.
Simulation results illustrate the interest of the proposed methodol-
ogy for signals with continuous spectra and for sinusoids.

1. INTRODUCTION

Recent papers of the signal processing literature have shown the
interest of subband decomposition for spectral estimation [1], [2].
Most interesting properties of subband decomposition have been
demonstrated for a bank of ideal infinitely sharp bandpass filters.
However, experimental results have shown that they can also apply
to non-ideal filterbanks such as modified Quadrature-Mirror Filters
(QMF’s) or cosine modulated filterbanks [2].

The main benefits provided by subband decomposition in the
case of parametric spectral estimation include model order reduc-
tion (which leads to a lower condition number for autocorrelation
matrices [3]), spectral density whiteness and reduction of linear
prediction error for autoregressive (AR) estimation [1]. It has also
been noted that the frequency spacing and local Signal to Noise
Ratio (SNR) are increased by the decimation ratio, in the case of a
peaked spectrum signal [4].

Unfortunately, new problems appear when performing para-
metric spectral estimation on subband signals. One of these prob-
lems is spectral overlapping: the same harmonic component may
appear in two contiguous subbands at two different frequencies,
when using non-ideal filterbanks. Another classical problem is due
to decimation: the variance of autocorrelation estimators increases
because decimation reduces the number of available samples. The
first disadvantage has been addressed in two recent papers [5] and
[6], where (non real-time) procedures have been proposed to per-
form subband spectral estimation without discontinuities or alias-
ing (even at subband borders). These procedures are appropriate
for a uniform filterbank. However, it is important to note that the
methods should also be applied to any kind of filterbank. This pa-
per studies a Subband Multichannel Autoregressive Spectral Esti-
mation (SMASE) method in order to tackle the second drawback.
In particular, the correlations between consecutive samples of a
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Fig. 1. Uniform Analysis filterbank with J subbands and a decimation
ratio of M .
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Fig. 2. Construction of M = 3 decimated subsequences.

subband signal are used to build an autocorrelation estimator with
reduced variance.

Section 2 formulates the problem and introduces the SMASE
model. The proposed subband spectral estimation procedure is
explained in section 3. Some simulation results are presented in
section 4. Conclusions and perspectives are reported in the last
section.

2. SMASE MODEL

Consider the jth branch of the filterbank depicted in figure 1. De-
note as u(n), n = 0, . . . , N − 1 the input random sequence,
Hj(z) the transmittance of the jth subband filter and v(j)(n), n =
0, . . . , N − 1 the output of this subband filter. The input samples
are filtered by the jth subband filter and decimated M times (by
M -fold decimators) yielding M subsequences x

(j)
m (n) (each with

N/M samples):

x(j)
m (n) = vj(Mn − m) ∀m = 0, . . . , M − 1. (1)

The construction of the decimated sequences x
(j)
m is illustrated on

figure 2 (note that m = 0, ..., M − 1). For brievity, the subscript j
representing the subband number is omitted in what follows. De-
note as x(n) = [x0(n), . . . , xM−1(n)]T the vector of size M
constructed from the nth samples of the different decimators. The
correlation matrix of this vector is defined as:

Kx(q) = E[x(n)xH(n − q)], (2)
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where q = −(N/M −1), . . . , (N/M −1), E[] denotes the math-
ematical expectation operator andH the hermitian transpose. The
diagonal terms of the matrix Kx(q) are made of autocorrelations
of the M subsequences, whereas the elements of the non diago-
nal terms are intercorrelations between the different subsequences.
Note that the intercorrelations between two decimated sequences
of the same subband are defined as:

rxm1xm2
(k) = rv(Mk + m2 − m1), ∀m1, m2. (3)

The principle of the SMASE method is the following: instead of
estimating the value of xm(n) (for a given m) as a function of
xm(n−1), . . . , xm(n−p) (where p is the model order), the whole
set of observations x(n) = [x0(n), ..., xM−1(n)]T is expressed as
a function of x(n − 1), . . . , x(n − p). This is the spirit of mul-
tichannel AR modelling, whose theory can be found in standard
textbooks such as [7, p. 457]. The pth order multichannel predic-
tor x̂(n) is recalled below:

x̂(n) = −
p∑

k=1

Akx(n − k), (4)

where Ak are matrices of size MxM . The corresponding predic-
tion error e(n) expresses as:

e(n) = x(n) − x̂(n)

= x(n) +
p∑

k=1

Akx(n − k).
(5)

3. SUBBAND SPECTRAL ESTIMATION

3.1. Estimation of Prediction Matrices

The prediction matrices Ak of (4) are classically estimated by min-
imizing an appropriate mean square error (MSE). In this paper, we
propose to minimize the sum of the prediction errors associated to
each monodimensional component of (5). This yields the follow-
ing p systems of equations [7]:

Kx(q) = −
p∑

k=1

AkKx(q − k), ∀q ∈ {1, ..., p}. (6)

The determination of matrices Ak from (6) requires the inversion
of a block-matrix of Toeplitz matrices of size (Mp) × (Mp).
The particular structure of this matrix allows the use of an order-
recursive algorithm (closed to the classical Levinson-Durbin algo-
rithm): the Wiggins-Robinson Algorithm. Further details can be
found in [8]. Note that the main difference between the Levinson-
Durbin and Wiggins-Robinson algorithms is that in the last case,
forward and backward prediction coefficient matrices are no longer
linked by a simple relationship. Other interesting works on block-
matrices of toeplitz matrices can be found in [9].

As for classical monodimensional AR models, it is easy to
show that the prediction error vector is centered (E[e(n)] = 0).
Moreover, the second order properties of e(n) can be summarized
as follows:

E
[
e(n)eH(n − s)

]
=

{
0 if s �= 0
Σ if s = 0

(7)

where

Σ = Kx(0) +

p∑
k=1

AkKH
x (k). (8)

In other words, the prediction error vector e(n) of a multi-dimensional
AR process is a vectorial white noise. Note that each component
xm(n) of the vector x(n) can be modelled as an ARMA sequence
[10]. An estimate Σ̂ of the matrix Σ can be easily obtained from
standard autocorrelation estimators.

3.2. Spectral Analysis based on Multichannel AR Modeling

Multichannel spectral analysis is classically performed by means
of a cross spectrum matrix Px(f). This matrix is defined as the
discrete Fourier transform of the correlation matrix Kx(q):

Px(f) = DFT [Kx(q)], (9)

where the Fourier transform is computed separately on each com-
ponent of the correlation matrix. This definition guaranties that
the matrix Px(f) is Hermitian symmetric. The power spectral
densities (PSDs) of the monodimensional components of x(n) are
located on the main diagonal of Px(f), whereas offdiagonal ele-
ments are cross spectra between the different components of x(n).
Denote as

A = I +

p∑
k=1

Ake−i2πfk (10)

where I is the M × M identity matrix (note that the matrix A has
the same size M × M ). The AR multichannel spectral estimator
can be derived as follows [7, p. 460]:

P̂AR(f) =
(
Â

)−1

Σ̂
(
Â−1

)H

. (11)

Note that M estimated PSDs of x0(n), ..., xM−1(n) can be found
on the main diagonal of P̂AR(f). The final estimates of the PSDs
are obtained by averaging the appropriate M diagonal elements of
P̂AR(f).
Remark: denote as pfull and p the model orders for the fullband
and subband AR processes respectively. When p = pfull, the vari-
ance of autocorrelation estimates computed from subband signals
are larger than the variances obtained from the fullband signal:

‖V ar[r̂sub]‖ > ‖V ar[r̂full]‖,

where r̂sub and r̂full are the estimated autocorrelation vectors of
subband and fullband signals. Conversly, when p = pfull/M , the
variances of r̂sub and r̂full are similar. However, it is important to
note that the length of the vector rsub is M times smaller than that
of the vector rfull, resulting in a loss of information. The SMASE
compensates this loss of information by considering M decimated
signals by branch of the filterbank.

4. SIMULATION RESULTS

SMASE modelling has been presented without any filter imple-
mentation consideration. However, it is well-known that non-ideal
filters result in spectral overlapping. In order to avoid this problem,
a specific procedure has been proposed in [6]. This procedure is
composed of a warping device (placed before the filterbank) which
is a bank of FIR modulated comb filters of order L. This results in
a specific spectral estimation which differs from one frequency to
another. As a consequence, the linear prediction errors also depend
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Fig. 3. Powers of Linear prediction Errors.

on the frequency, as shown for instance on figure 3. The transmit-
tance of the jth FIR modulated comb filter has been chosen as
follows:

|Hj(e
i2πf )|2 =

{
1
L

sin2 π(f−Fj)L

sin2 π(f−Fj)
if f �= Fj ,

L if f = Fj ,
(12)

where j is the subscript of the considered subband (j ∈ {0, ..., M−
1} and Fj = j 0.5

M
+ 0.25

M
is the center of the jth subband. Thus, the

transmittance equals periodically zero around Fj with period 1/L.
This is the alias-free condition for subband spectral estimation de-
rived in [6]. Moreover, the filterbank parameters are L = 16 and
M = 4. Two sets of simulations have been conducted for signals
with continuous and line spectra. These simulations are discussed
below.

4.1. Signals with Continuous Spectra

The first experiments have been carried out for 6th order moving
average (MA) signals with N = 100 samples. These signals are
obtained at the output of a FIR filter driven by a white noise w(n)
of variance σ2

w = 0.8. The MA parameter vector is

b = [−0.1837, 0.5373,−0.3252, 0.4351, 0.1419, 0.01174].

The filterbank is a uniform maximally decimated comb filterbank
with L = 16 and M = 4. The model orders for fullband and
subband AR spectral estimation are pfull = 16 and p = 4 respec-
tively. Note that the model order in the subbands is p = pfull/M
in order to use the same autocorrelation samples from the filtered
signal v(n).

The Linear Prediction Errors (LPEs) obtained from fullband
and subband AR modelling are depicted in figure 3. The subband
LPEs are clearly lower than the fullband ones, which reflects the
advantage of working in subbands. The SMASE method yields M
predictors for each subband. The corresponding LPEs have been
averaged and plotted in figure 3. The averaged LPEs are clearly
lower than those obtained with fullband and subband signals. Con-
sidering several decimated signals per subband allows to improve
prediction, as expected.

Next simulations illustrate the performance of spectral estima-
tors based on fullband and subband signals. The biases and vari-
ances of the different estimators (computed from 50 Monte-Carlo
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runs) are plotted in figures 4 and 5. Note that the subband multi-
channel AR spectral estimator has been obtained by averaging the
M spectral estimators provided by the diagonal of matrix P̂AR(f)
(see eq.(11)). These results show that the SMASE method allows
to reduce the bias and variance of spectral estimators for signals
with continuous spectrum.

The next section investigates the performance of the SMASE
method for noisy harmonic signals.

4.2. Noisy Harmonic Signals

This section considers a pure sinusoid with amplitude A, normal-
ized frequency f0 and random phase φ uniformly distributed over
[0, 2π] (the signal parameters are A = 1, f0 = 0.1 and N = 100).
This sinusoid is embedded in an additive white Gaussian noise (n)
with variance σ2

b = 0.05 (SNR = 10 dB):

u(n) = A sin (2πf0n + φ) + b(n) (13)

Simulations are conducted with the same filterbank as in the pre-
vious section. The different results have been obtained from 250
Monte-Carlo runs.

Figure 6 shows the powers of LPEs for fullband and subband
AR spectral estimators. Similarly to signals with continuous spec-
tra, the SMASE method provides the better results in terms of pre-
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diction. The variances of the different frequency estimators (es-
timators of f0) are compared to the corresponding Cramer-Rao
lower bound in figure 7. The estimator variances are clearly re-
duced when using the SMASE method. This result is also high-
lighted on figure 8 where FFT, fullband AR, subband AR and aver-
aged SMASE spectra are represented (zoom in the first subband).
To summarize, the SMASE method provides the best spectral es-
timators in terms of variance and, above all, in terms of spectral
resolution.

5. CONCLUSION

This paper studied a new parametric spectral estimation procedure
based on multichannel AR modelling. The proposed method used
the a priori information provided by the whole knowledge of the
autocorrelation function of the filtered signal v(n) on one branch
of the filterbank. Simulations were conducted for signals with con-
tinuous and line spectra. The proposed method outperformed tra-
ditional fullband and subband AR estimators in terms of linear pre-
diction error and bias and variance of frequency estimators.
This communication addressed the important problem of off-line
spectral estimation. However, the proposed methodology based on
multichannel AR modelling might also be implemented for on-line
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spectral estimation. In particular, it seems interesting to design
adaptive filters constructed under the alias-free condition. These
filters should allow to reduce the linear prediction errors and the
variance of frequency estimators. This work is currently under in-
vestigation.
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