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ABSTRACT

The traditional formulation of the minimum variance spec-
tral estimator (MVSE) depends on the inverse of the auto-
correlation matrix, which has a Toeplitz structure in the 1-
D case. A fast computational algorithm exists that exploits
this structure. This paper extends the class of fast MVSE al-
gorithms to the case of a least-squares-based data-only for-
mulation linked to the covariance case of linear prediction,
which involves a near-to-Toeplitz matrix inverse. We show
here that the inverse involves structures that yield fast com-
putational formulations for the least-squares-based MVSE,
in which the inverse has a special representation as sums of
products of triangular Toeplitz matrices.

1. INTRODUCTION

The MVSE was originally introduced by Capon [1, Chap.
12] for use in multi-dimensional seismic array frequency-
wavenumber analysis. A fast computational algorithm for
evaluating the 1-D MVSE, which is a function of an inverse
Toeplitz autocorrelation matrix, was discovered by Musicus
in 1985 [2]. It exploited the structure of the Toeplitz inverse,
which can be formulated in terms of triangular Toeplitz ma-
trix products with matrix elements composed of 1-D autore-
gressive (AR) parameters. However, when the autocorrela-
tion is unknown and only data samples are available, the
1-D MVSE can be formulated in least squares terms, which
results in a MVSE expression involving an inverse of a ma-
trix previously encountered in the covariance method of 1-
D linear prediction. The matrix has a near-to-Toeplitz struc-
ture. In this paper, we show that the inverse of this near-to-
Toeplitz matrix can also be formulated in terms of Toeplitz
matrix products composed of parameters from the covari-
ance linear prediction fast algorithm. These in turn can be
substituted for the inverse matrix to obtain a fast computa-
tional algorithm for evaluating the 1-D least-squares-based
covariance MVSE. The new fast algorithm not only inherits
the estimation performance advantages of the least-squares-

based MVSE over the autocorrelation-based MVSE, but also
is a computationally efficient algorithm. Future papers will
cover the 1-D least-squares-based modified covariance MVSE
and the 2-D least-squares-based MVSE.

2. MVSE: KNOWN AUTOCORRELATION CASE

The MVSE is based on the concept of filtering the signal
process x[n] forward through the FIR filter

yf [n] =
p∑

k=0

h[k]x[n − k] = xT
p [n]h (1)

of order p and output yf [n], in which data vector xT
p [n] =(

x[n] x[n − 1] · · · x[n − p]
)

is of dimension p + 1, and
likewise for filter vector hT =

(
h[0] h[1] · · · h[p]

)
. The

statistical expectation of the filter output variance is simply

ρ = E{|yf [n]|2} = hHE{x∗
p[n]xT

p [n]}h = hHRph (2)

in which the (p+1)×(p+1) Toeplitz autocorrelation matrix
is

Rp =

⎛
⎜⎝

r[0] · · · r∗[p]
...

. . .
...

r[p] · · · r[0]

⎞
⎟⎠ (3)

and r[m] = E{x[n + m]x∗[n]} are the autocorrelation se-
quence elements. We minimize the filter output variance
subject to the constraint that, at a frequency f0, the gain is
unity, that is, eHp (f0)h = 1 in which the complex sinusoidal

vector eTp (f0) = (1 exp(j2πf0T ) · · · exp(j2πf0pT ))T

and T is the sample interval. The result of the constrained
minimization of the variance [1, page 353] is

ρMV =
1

eHp (f0)R−1
p ep(f0)

. (4)

Scaling the variance by T yields units of power spectral
density. Letting the frequency range over −1/2T ≤ f ≤
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1/2T , we arrive at the definition of the MVSE

PMV(f) = TρMV =
T

eHp (f)R−1
p ep(f)

. (5)

A fast computational algorithm, due to Musicus [2], is ob-
tained by first noting that the inverse of the Toeplitz autocor-
relation matrix can be expressed as the following difference
of products of triangular Toeplitz matrices

R−1
p =

1
ρp

ApAH
p − 1

ρp
BpBH

p (6)

in which the (p + 1) × (p + 1) triangular Toeplitz matrices

Ap =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 · · · 0 0
ap[1] 1 · · · 0 0

...
. . .

. . .
...

...

ap[p − 1] ap[p − 2]
. . . 1 0

ap[p] ap[p − 1] · · · ap[1] 1

⎞
⎟⎟⎟⎟⎟⎟⎠

Bp =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 · · · 0 0
a∗

p[p] 0 · · · 0 0
...

. . .
. . .

...
...

a∗
p[2] a∗

p[3]
. . . 0 0

a∗
p[1] a∗

p[2] · · · a∗
p[p] 0

⎞
⎟⎟⎟⎟⎟⎟⎠

are composed of AR parameters and white noise variance
solutions from the Yule-Walker equation Rp

(
1 ap[1] . . .

ap[p]
)T =

(
ρp 0 . . . 0

)T
. Substituting Eq. 6 for the

inverse matrix into Eq. 5 yields

PMV(f) =
T∑p

k=−p ψMV[k] exp(−j2πfkT )
(7)

in which the complex conjugate symmetric coefficients
ψMV[k] = ψ∗

MV[−k] for −p ≤ k ≤ −1 are weighted cor-
relations of the AR parameters

ψMV[k] =
1
ρp

p−k∑
i=0

(p + 1 − k − 2i)ap[k + i]a∗
p[i] (8)

over the interval 0 ≤ k ≤ p. Thus, FFTs can be used for a
fast correlation computation and for evaluating the denom-
inator expression of Eq. 7.

3. LS-MVSE: LEAST SQUARES DATA-ONLY CASE

The MVSE can also be formulated in terms of least squares
minimization of the estimated variance when using only a
finite data record, x[n] for 1 ≤ n ≤ N . The variance may

then be estimated as

ρ̂p =
1

(N − p)

N∑
n=p+1

|yf [n]|2 (9)

=
1

(N − p)
hH

( N∑
n=p+1

x∗
p[n]xT

p [n]
)
h

=
1

(N − p)
hH(

XH
p Xp

)
h

in which the (N − p) × (p + 1) rectangular Toeplitz data
matrix is

Xp =

⎛
⎜⎜⎜⎜⎜⎜⎝

x[p + 1] · · · x[1]
...

. . .
...

x[N − p] · · · x[p + 1]
...

. . .
...

x[N ] · · · x[N − p]

⎞
⎟⎟⎟⎟⎟⎟⎠

. (10)

Minimizing the estimated variance subject to the same unit
gain constraint as applied to the autocorrelation-based MVSE
yields the following least-squares-based MVSE

PLSMV(f) =
T

eHp (f)R̄−1
p ep(f)

(11)

in which the product matrix R̄p = XH
p Xp does not have a

Toeplitz structure, but does have a near-to-Toeplitz property
similar as that described in [3]. This “nearness” can be ex-
ploited to yield the following sums of products of triangular
Toeplitz matrices to represent the inverse [4]

R̄−1
p =

1
ρa

p

ApAH
p − 1

ρb
p

BpBH
p (12)

+
1

ρc
p−1

Cp−1CH
p−1 −

1
ρd

p−1

Dp−1DH
p−1

in which the (p + 1) × (p + 1) triangular Toeplitz matrices

Ap =

⎛
⎜⎜⎜⎜⎜⎝

1 0 · · · 0 0
ap[1] 1 · · · 0 0

...
...

. . .
...

...
ap[p − 1] ap[p − 2] · · · 1 0

ap[p] ap[p − 1] · · · ap[1] 1

⎞
⎟⎟⎟⎟⎟⎠

Bp =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 · · · 0 0
bp[p] 0 · · · 0 0

...
...

. . .
...

...

bp[2] bp[3]
. . . 0 0

bp[1] bp[2] · · · bp[p] 0

⎞
⎟⎟⎟⎟⎟⎟⎠
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Cp−1 =

⎛
⎜⎜⎜⎜⎜⎝

0 0 · · · 0 0
cp−1[0] 0 · · · 0 0

...
...

. . .
...

...
cp−1[p − 2] cp−1[p − 3] · · · 0 0
cp−1[p − 1] cp−1[p − 2] · · · cp−1[0] 0

⎞
⎟⎟⎟⎟⎟⎠

Dp−1 =

⎛
⎜⎜⎜⎜⎜⎝

0 0 · · · 0 0
dp−1[0] 0 · · · 0 0

...
...

. . .
...

...
dp−1[p − 2] dp−1[p − 3] · · · 0 0
dp−1[p − 1] dp−1[p − 2] · · · dp−1[0] 0

⎞
⎟⎟⎟⎟⎟⎠

are formed from the forward linear prediction parameters
ap[m], forward linear prediction error variance ρa

p, back-
ward linear prediction parameters bp[m], backward linear
prediction error variance ρb

p, gain adjustment parameters
cp[m] and dp[m], and scalar gain adjustment factors ρc

p and
ρd

p. These are defined as matrix equations associated with
the covariance linear prediction case

R̄p

(
1 ap[1] · · · ap[p]

)T =
(

ρa
p 0 · · · 0

)T
R̄p

(
bp[p] · · · bp[1] 1

)T =
(

0 · · · 0 ρb
p

)T
R̄p

(
cp[0] · · · cp[p]

)T = x∗
p[N ]

R̄p

(
dp[0] · · · dp[p]

)T = x∗
p[p + 1]

ρc
p = 1 − xT

p [N ]R̄−1
p x∗

p[N ]

ρd
p = 1 − xT

p [p + 1]R̄−1
p x∗

p[p + 1] .

All of these parameters and factors are computed recur-
sively as part of a normal execution of the fast computa-
tional solution to the least squares covariance case of linear
prediction, as detailed in [1, Chap. 8 ]. Based on Eq. 12
substituted into Eq. 11, the complex conjugate symmetric
ψ̄MV[k] coefficients for the least-squares-based MVSE

PLSMV(f) =
T∑p

k=−p ψ̄MV[k] exp(−j2πfkT )
(13)

are

ψ̄MV[k] =
p−k∑
i=0

(
1
ρa

p

(p + 1 − k − i)ap[k + i]a∗
p[i]

− 1
ρb

p

i bp[i]b∗p[k + i] (14)

+
1

ρc
p−1

(p − k − i)cp−1[k + i]c∗p−1[i]

− 1
ρd

p−1

(p − k − i)dp−1[k + i]d∗p−1[i]
)

for 0 ≤ k ≤ p and where ψ̄MV[k] = ψ̄∗
MV[−k] for −p ≤

k ≤ −1. Note: (a) ap[0] = bp[0] = 1 and cp−1[p] =
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(c) LS-MVSE has no line splitting

Fig. 1. Power spectral estimate of a finite complex point
test sequence for p = 5 and f = 2 Hz. (Notation: Blue di-
amond and red square lines are corresponding to the direct
evaluation method and the fast algorithm of the LS-MVSE,
respectively, compared with the Burg algorithm (black star
line). Data samples in figure(a) and (b) are 200, in Figure(c)
20.)

dp−1[p] = 0 by definition; (b) cp−1[0] �= 0 and dp−1[0] �=
0; (c) when calculating the linear prediction parameters and
the gain adjustment parameters, the maximum order pmax

must satisfy pmax < (N − 1)/2, otherwise R̄p is not in-
vertible by Eq. 12.

The new algorithm requires 20 1
2p2−(9N−4 1

2 )p+11N
multiply operations and 8 1

2p2 − (9N + 8 1
2 )p + 13N add

operations to calculate the set of ψ̄MV[k], 0 ≤ k ≤ p, co-
efficients. An FFT in Eq. 13 is then used to evaluate the
denominator of the LS-MVSE over a range of frequencies.
It only requires 5p + 12N memory locations to save all of
the parameters. This is more efficient then direct evaluation
of the original MVSE function Eq. 11, which requires, for
each frequency, 2

3p3 + 5
3p2 + (N + 7)p + N multiply op-

erations, 2
3p3 + 2p2 + (N + 4

3 )p + N add operations and
p2 + (4 + N)p + N memory locations to store parameters.
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Fig. 2. Output variances, ρa and ρb, of forward and back-
ward linear prediction decrease as order p increases.

4. SIMULATION RESULTS AND DISCUSSION

Because the Burg AR spectral estimate is one of the earli-
est and most frequently used spectral algorithms, we com-
pared it with our new fast algorithm of the least-squares-
based MVSE. Fig. 1 illustrates the MVSE based on both
algorithms, direct evaluation of Eq. 11 and R̄p = XHX,
and the new fast algorithm of MVSE. The spectra are or-
der 5 estimates produced from 200 complex samples of a
process consisting of two sinusoids, of magnitude 100 units
and frequencies f1 = -0.3 Hz and f2 = 0.15 Hz, with addi-
tive noise of variance 0.01 (SNR = 60 dB). The sampling
rate f is 2 Hz. Fig. 1(a) shows that the new fast algorithm
achieves comparable performance as the other two algo-
rithms. It also inherits the advantage of sharper peaks from
MVSE, especially when the data record is short. Burg’s
peaks are wider than those produced by the two MVSE
methods. Moreover, increasing the number of the psd val-
ues in the vicinity of the peaks to zoom in on the peaks,
one can see that the two biased peaks in the Burg spectral
estimate are not exactly at -0.3 Hz and 0.15 Hz in Fig. 1(b).
However, the two peaks of the two MVSE algorithms stay
right on the two correct frequencies. The new fast algorithm
inherits the unbiased spectral estimation property from the
MVSE. As the data record decreased to 20 samples, Fig. 1(c)
illustrates that the spectrum of the new fast algorithm of the
least-squares-based MVSE does not exhibit the spectral line
splitting ([1, Chap.8]) phenomenon of the Burg algorithm.

The new fast algorithm is not only more computation-
ally efficient than the direct evaluation of the least-squares-
based MVSE, it is also able to save all of the parameters of
intermediate orders when it recursively calculates the pa-
rameters from order zero to order p. The output variances

ρa and ρb will decrease to very small values as the order
increases, as illustrated in Fig. 2 for a 128-complex point
radar data record, sampling rate f = 100 Hz. By provid-
ing all intermediate order parameter values, this allows us
to choose the optimal order. It is especially appropriate for
applications in which the appropriate order is not known a
priori. This allows us to choose the optimal order popt by
making a plot like Fig. 2 without additional computations.
Once the optimal order is selected, the saved parameters
can then be used to compute Eq. 13 for this order. It is
also easy to change the order without re-computing the set
of required parameters. Therefore the new algorithm of the
least-squares-based MVSE is computationally efficient and
order selectable.

5. CONCLUSION

A new fast algorithm for solving the least-squares-based
MVSE has been introduced in this paper. It has been shown
that there is significant reduction of the computation com-
plexity over the direct evaluation computation method of
the least-squares-based MVSE. Computations proportional
to p2, and memory storage proportional to p are required,
versus p3 computations and p2 storage for the direct solu-
tion method. The new fast algorithm saves all intermediate
order parameters so that one can choose the optimal order
and also can change the order without recalculating the pa-
rameters. The new fast MVSE algorithm inherits the ad-
vantages of the least-squares-based spectral estimation and
is appropriate for applications in which the autocorrelation
is unknown and only finite data samples are available.
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