
TWO-DIMENSIONAL NONPARAMETRIC SPECTRAL ANALYSIS
IN THE MISSING DATA CASE

Yanwei Wang, Jian Li
�

University of Florida
Dept. of Electrical and Computer Engineering

Gainesville, FL 32611, USA

Petre Stoica
�

Uppsala University
Department of Information Technology

SE-75105 Uppsala, Sweden

ABSTRACT

We consider two-dimensional (2-D) nonparametric complex
spectral estimation (with its 1-D counterpart as a special
case) of data matrices with missing samples occurring in
arbitrary patterns. Previously, the MAPES-EM algorithms
were developed for the general 1-D missing-data problem
and shown to have excellent spectral estimation performance.
In this paper, we present 2-D extensions of MAPES-EM
and develop another 2-D MAPES algorithm, referred to as
MAPES-CM, which solves a maximum likelihood problem
iteratively via cyclic maximization (CM). Compared with
MAPES-EM, MAPES-CM has similar spectral estimation
performance but is computationally much more efficient.

1. INTRODUCTION

Spectral estimation is important in many fields including
astronomy, communications, medical imaging, radar, and
underwater acoustics. Most existing spectral estimation al-
gorithms are devised for uniformly sampled complete-data
sequences. However, the spectral estimation for data se-
quences with missing samples is also important in a wide
range of applications [1] such as synthetic aperture radar
(SAR) imaging with angular diversity.

Recently, we have proposed the one-dimensional (1-D)
missing-data amplitude and phase estimation via expecta-
tion maximization (MAPES-EM) algorithms to deal with
the general missing-data problem where the missing data
samples occur in arbitrary patterns [1]. However, the MAPES-
EM algorithms are computationally intensive. The direct
application of MAPES-EM to large data sets, such as two-
dimensional (2-D) data, is computationally prohibitive.

We consider herein the problem of 2-D (with its 1-D
counterpart as a special case) nonparametric spectral esti-
mation of data matrices with missing data samples occur-�
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ring in arbitrary patterns. First, we present 2-D extensions
of the MAPES-EM algorithms introduced in [1] in the 1-D
case. Then we develop a new MAPES algorithm, referred
to as MAPES-CM, by solving an ML problem iteratively
via cyclic maximization (CM). MAPES-EM and MAPES-
CM possess similar spectral estimation performance, but the
computational complexity of the latter is much lower than
that of the former.

The remainder of this paper is organized as follows. In
Section 2, we review the 2-D APES algorithm. In Section
3, we present 2-D extensions of the MAPES-EM algorithms
and develop the 2-D MAPES-CM algorithm. Numerical ex-
amples are provided in Section 4 to demonstrate the perfor-
mance of the MAPES algorithms. Finally, Section 5 con-
cludes the paper.

2. 2-D APES FOR COMPLETE-DATA SPECTRAL
ESTIMATION

Consider the problem of estimating the amplitude spectrum
of a complex-valued uniformly sampled 2-D discrete-time
signal

� � � � � � � � 	 � 
 � � 	 � 
 �� � � 
 � � � � 

, where the data matrix is � � �

� � . We require � � � �
and � � � �

, where the special case
of � � � �

corresponds to the 1-D case.
For a 2-D frequency � � � � � � � of interest, the signal

� � � � � �
is described as� � � � � � � � � � � � � � � � � � �
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where ! � � " � # # # � � � $ � � ! � � " � # # # � � � $ � � � � � � � %& " � ' ( � , � � � � � � � � denotes the complex amplitude of the 2-
D sinusoidal component at frequency � � � � � � � , and � � � � � �

� � � � � � � denotes the corresponding residual matrix (assumed
zero-mean) which includes the unmodeled noise and inter-
ference from frequencies other than � � � � � � � .

Partition the � � � � � data matrix ) into * � * � over-
lapping submatrices +) , � � , �

of size - � � - � . Here . � �
" � # # # � * � $ �

, . � � " � # # # � * � $ �
, * � / � � $ - �  �

, and
* � / � � $ - �

 �
. Let

+0 , � � , � � vec
& +) , � � , � 1 �

(2)
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where vec
� � �

denotes the operation of stacking the columns
of a matrix on top of each other. Let� � � � � � � � � � � 	 � � � � � � � 
 � � � � �

(3)

where � denotes the Kronecker matrix product, and� � � � � � � � � � 
 � � � � � � 
 � � � � � � �
� � � � � � � � � �

(4)
with � � � �

denoting the transpose. Then, according to (1),
the snapshot vector �� � 
 � � 	

can be written as

�� � 
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(5)

where �� � 
 � � 	 � � � � � � � is formed from
� 
 � 
 � � 	 � � � � � � � �

in the
same way as �� � 
 � � 	

is made from
� � � 
 � � 	 �

. To estimate
� � � � � � � � , the APES algorithm mimics an ML estimator
by assuming that

� �� � 
 � � 	 � � � � � � � � 	 
 � � � 	 	 � �
� 
 �  � � 	 �  

are zero-mean
circularly symmetric complex Gaussian random vectors that
are statistically independent of each other and have the same
unknown covariance matrix
 � � � � � � � � � � �� � 
 � � 	 � � � � � � � �� 
� 
 � � 	 � � � � � � � � �

(6)

where � � � 
 denotes the conjugate transpose. For notational
convenience, we drop the explicit frequency dependence on

� � � � � � � in the following derivations.
Using the above assumptions, we get the normalized

log-likelihood function of the data snapshots
� �� � 
 � � 	 �

as fol-
lows: �
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where � � � � �
and

� � �
denote the trace and the determinant

of a matrix, respectively. Let �� denote the normalized 2-D
Fourier transform of �� � 
 � � 	

: �� �
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. Maximizing the log-likelihood function in (7) with

respect to � and



yields
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�
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 %
(9)

3. 2-D MAPES FOR MISSING-DATA SPECTRAL
ESTIMATION

Assume that some elements of the data matrix & are miss-
ing. Due to these missing data samples, the log-likelihood

function (7) cannot be maximized directly. In this section,
we will show how to tackle this missing-data problem, in
the ML context, through the use of the expectation maxi-
mization (EM) and cyclic maximization (CM) algorithms.

3.1. 2-D MAPES-EM (Expectation Maximization)

Letting � denote the vector containing the unknowns in
� � �
 �

, the EM algorithm solves the missing-data ML problem
iteratively by maximizing the conditional expectation

�� � � � �  ! � "� # $ � � � � % � & � � � ''' % � �� � � � ( %
(10)

where �� � is the current estimate of the parameter vector, and% and
&

stand for the available and missing data samples,
respectively.

3.1.1. 2-D MAPES-EM1

We assume that the data snapshots
� �& � 
 � � 	 �

(or
� �� � 
 � � 	 �

) are
independent of each other, and hence we estimate the miss-
ing data separately for different data snapshots. For each
data snapshot �� � 
 � � 	

, let �% � 
 � � 	
and �& � 
 � � 	

denote the vec-
tors containing the available and missing elements of �� � 
 � � 	

,
respectively. Assume that �% � 
 � � 	

has dimension ) � 
 � � 	 ' �
where

� * ) � 
 � � 	 * # � # � is the number of available el-
ements in the snapshot �� � 
 � � 	

. Then �% � 
 � � 	
and �& � 
 � � 	

are
related to �� � 
 � � 	

by unitary transformations as follows:

�% � 
 � � 	 � �+ �, � ( � � ( � � �� � 
 � � 	
(11)

�& � 
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(12)

where �+ , � ( � � ( � � and �+ - � ( � � ( � � are # � # � ' ) � 
 � � 	
and # � # �' � # � # � " ) � 
 � � 	 � unitary selection matrices such that �+ �, � ( � �

( � � �+ , � ( � � ( � � � . , � 
 / � 	
, �+ �- � ( � � ( � � �+ - � ( � � ( � � � . � 
 � 	 � , � 
 / � 	

and �+ �, � ( � � ( � � �+ - � ( � � ( � � � 0 , � 
 / � 	 1 � � 
 � 	 � , � 
 / � 	 �
. Because

we clearly have

�� � 
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(13)

the joint normalized log-likelihood function of
� �% � 
 � � 	 � �& � 
 � � 	 �

is obtained by substituting (13) into (7).
From the Gaussian assumption on �� � 
 � � 	

, it follows that
the probability density function of �& � 
 � � 	

conditioned on �% � 
 � � 	
(for given � � �� � � �

) is complex Gaussian with mean �2 � 
 � � 	
and covariance matrix �3 � 
 � � 	

[2]:

�& � 
 � � 	 � �% � 
 � � 	 � �� � � � 4 5 6
� �2 � 
 � � 	 � �3 � 
 � � 	 � �

(14)

where �2 � 
 � � 	
and �3 � 
 � � 	

are functions of �% � 
 � � 	
, �� � � �

, �+ , � ( � � ( �
� , and �+ - � ( � � ( � � . Based on this observation, the optimiza-
tion problem in (10) can be readily solved [1].
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3.1.2. MAPES-EM2

Following the observation that the same missing data sam-
ples may enter in many snapshots, we propose a second
method to implement the EM algorithm by estimating the
missing data simultaneously for all data snapshots. Let

� � vec
� � �

(15)

denotes the vector of all the data samples. Similar to the
MAPES-EM1 case, we let � and

�
denote the vectors con-

taining the available and missing elements of � , respec-
tively. Then � has a size of � � �

, where � is the number of
available samples.

Let
�� denote the � � � 	 
 � 
 	 � �

vector obtained by
concatenating all the snapshots

�� ��
��
� �� � 
 �

...

�� � � � � 
 � � � �

� �
� � � � � � � � � �

(16)

where
� � (which has a size of � � � 	 
 � 
 	 � � ) and

� �
(which has a size of � � � 	 
 � 
 	 � � � � � 	 � � � ) are the
corresponding selection matrices for the available and miss-
ing data vectors, respectively. Due to the overlapping of the
vectors

� �� � � 
 � � �
,

� � and
� �

are not unitary, but they are
still orthogonal to each other:

� �� � � � � � 	 � � � � � � � �
. So

instead of (11) and (12), we have from (16):

� � � � �� � � �
� � � �� �� � �� �� �� (17)

and � � � � �� � � �
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(18)

where the matrices
�� � and

�� �
introduced above are defined

as
�� � �� � � � � �� � � �

� �
,

�� � �� � � � � �� � � �
� �

, and they are

also orthogonal to each other:
�� �� �� � � � � 	 � � � � � � � �

.
Now the normalized log-likelihood function in (7) can

be written as�� � � � 
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where 	 and
�

are defined as:

	 ��
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!
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(20)
Substituting (16) into (19), we obtain the joint log-likelihood
of � and

�
.

To derive the EM algorithm for the current set of as-
sumptions, we note that for given �� � � �

and �� � � �
, we have

(similarly to (14)):� 
 � � �� � � � � � �
� � � � � �

(21)

where
�

and
�

are functions of � , �� � � �
,

�� �� , and
�� ��

.
Similar to MAPES-EM1, the solution of (10) in this case

can be readily obtained [1].

3.2. 2-D MAPES-CM (Cyclic Maximization)

Next we consider a � � � � 	 -point DFT grid: � $ � � � $ � � � �
� % � � � 
 � � � % � � 	 
 � 	 � for

� � � & � # # # � � � � �
and

� 	 �
& � # # # � � 	 � �

. (Usually we choose � � ' � �
and � 	 ' � 	 .)

Instead of dealing with each individual frequency � $ � � � $ � � �
separately, we consider the following maximization prob-
lem:

� � �� 
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� � ( � � � � ��

� � ( � � � 
 � 
 � 
 � �
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� � � ��
� � ( �

� � � ��
� � ( ��

�� � � 
 � � � � � �  � !  � � � "
!  � � � � ! �

� � � �
�� � � 
 � � � � � �  � !  � � � "

!  � � � � ! " �
(22)

where the objective function is the summation over the 2-
D frequency grid of all the frequency-dependent complete-
data likelihood functions in (7) (within an additive constant),
and again, we have dropped the frequency dependence on

� $ � � � $ � � � for notational convenience. We solve the above
optimization problem via a cyclic maximization (CM) ap-
proach.

First, assuming that the previous estimate �� � � �
formed

from
� �� � � � � �� � � � �

is available, we maximize (22) with re-
spect to

�
. This step can be re-formulated as

� � �� � � � ��
� � ( � � � � ��

� � ( � # �� � �� � � � 	 $ � � �� � � � ! � � # �� � �� � � � 	 $ �

(23)
where

�� , 	 , and �� � � �
have been defined previously. Recall-

ing that
�� � � � � � � � �

, we can easily solve the optimiza-
tion problem in (23) as its objective function is quadratic in�

:

�� � # � �� � � � � $ � � # � �� � � � � �� � � � � � $ �
(24)

where
� � ) % � � � �� � ( � % � � � �� � ( � � �� � � � ! � �

and
� � ) % � � � �� � ( �

% � � � �� � ( � � �� � � � ! � �
�� � � � 	 .

Once an estimate ��
has become available, we re-estimate� � �

and
� � �

by maximizing (22) with
�

replaced by ��
.

This can be done by maximizing each frequency term sepa-
rately, which reduces to the 2-D APES problem introduced
in Section 2.

A cyclic maximization of (22) can be implemented by
the alternating maximization with respect to

�
and, respec-

tively, � and
�

.
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3.3. MAPES-EM versus MAPES-CM

Consider evaluating the spectrum for all three MAPES algo-
rithms on the same DFT grid. Since during each iteration,
all three algorithms estimate the missing samples and the
spectrum, we can compare their computational complexity
separately for each step. Comparing (24) with estimation
of

�
and

�
(or �� � � � � �

and �� � � � � �
), which have to be evalu-

ated for each frequency � � �
� � � �

� � (and for each snapshot
for �� � � � � �

and �� � � � � �
), we note that the computational com-

plexity of MAPES-CM is much lower. When they calculate
the spectrum, MAPES-CM uses the standard APES algo-
rithm which can be efficiently implemented [3]. Due to the
fact that MAPES-EM uses different estimates for the miss-
ing data at different frequencies, no efficient algorithms are
available to calculate the corresponding spectral estimate.

4. NUMERICAL EXAMPLES

We consider a
	 � 
 	 �

data matrix consisting of three 2-
D sinusoids at normalized frequencies (4/16, 5/16), (6/16,
5/16), and (10/16, 9/16) and with complex amplitudes equal
to 1, 0.7, and 2, respectively, embedded in zero-mean cir-
cularly symmetric complex Gaussian white noise with stan-
dard deviation 0.1. All the samples in rows 4, 8, 11, 14, and
in columns 3, 6, 7, 11, 12, 14 are missing, which amounts
to over 50% of the total number of data samples. The true
amplitude spectrum is plotted in Figure 1(a) with the esti-
mated amplitude values given next to each sinusoid. Each
spectrum is obtained on a

� � 
 � �
grid. The data missing

pattern is displayed in Figure 1(b). The WFFT spectrum for
the missing data case is shown in Figure 1(c), which under-
estimates the sinusoids and contains strong artifacts due to
the zeros assumed for the missing samples. In Figures. 1(d),
1(e), and 1(f), we show the spectra estimated by MAPES-
EM1, MAPES-EM2, and MAPES-CM, respectively, with

� � 
 � � 
 � . The WFFT spectrum is used as the initial
estimate of � � � � � � � � , and the initial estimate of

� � � � � � � �
is calculated from (9) with missing samples set to zero. All
MAPES algorithms perform well by giving accurate spec-
tral estimates and clearly separated spectral peaks.

5. CONCLUSIONS

We have considered 2-D nonparametric complex spectral
estimation (with its 1-D counterpart as a special case) for
data matrices with missing samples occurring in arbitrary
patterns. The previously proposed MAPES-EM algorithms
have been extended to the 2-D case. We have also developed
another missing-data algorithm, referred to as MAPES-CM,
by maximizing an ML fitting criterion iteratively via a cyclic
maximization (CM) algorithm. We have comparedMAPES-
EM with MAPES-CM and have shown that MAPES-CM al-
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Fig. 1. Modulus of the 2-D spectra: (a) True spectrum, (b)
2-D data missing pattern, the black stripes indicate miss-
ing samples, (c) 2-D WFFT, (d) 2-D MAPES-EM1, (e) 2-D
MAPES-EM2, and (f) 2-D MAPES-CM.

lows significant computational savings comparedwith MAPES-
EM, which is especially desirable for 2-D applications.
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