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ABSTRACT

The MUSIC method represents a class of super-resolution
methods for frequency estimation. However, it has poor per-
formance in impulsive noise environments due to the pres-
ence of outliers. A more robust method called trimmed cor-
relation based-MUSIC (TR-MUSIC) method is proposed in
this paper. Through a trimming operation, outliers in the
samples participating in the correlation calculation are dis-
carded. The amount of trimming is determined by the Ma-
halanobis distance in which robust estimates of location and
scale are utilized. Frequency estimation results from the
eigendecomposition of the trimmed correlation matrix. Cor-
roborating simulations are presented to show the robustness
and performance improvement of the proposed method.

1. INTRODUCTION

Frequency estimation of sinusoidal signals embedded in white
noise is frequently encountered in many applications such
as radar, sonar and speech processing. It has been a classi-
cal problem in signal processing for many years. Among
the methods proposed to address this problem, subspace
based methods such as MUSIC and its variants, ESPRIT ,
and minimum norm method, have been extensively used due
to their super-resolution capability. These approaches give
very accurate frequency estimates in non-impulsive white
noise case.

In some circumstances, however, noise may exhibit im-
pulsive characteristics. For example, non-Gaussian α-stable
noise has heavier tails than Gaussian noise and does not
even possess finite variance. Impulsive noise occurs quite
often in some practical situations, examples of which in-
clude radar clutter, underwater acoustics, and seismologi-
cal measurements. The outliers appearing in the noise sig-
nificantly distort the original signal, make the conventional
autocorrelation estimates biased, and consequently degrade
the performance of the aforementioned subspace based meth-
ods. Therefore, robust frequency estimators need to be de-
veloped to properly handle impulsive noise environments.

Several robust methods for either frequency or spectral
estimation have been reported in the literature [1, 2, 3, 4].
In this paper, a new frequency estimation method which is
based on MUSIC, but is more robust to impulsive noise, is
proposed. In order to obtain a cleaned version of the data, a
trimming operation is applied to the two vectors contribut-
ing to the correlation calculation. The resulting correlation
estimate is referred to as the trimmed correlation. The MU-
SIC pseudospectrum is computed from the trimmed cor-
relation matrix. The method is therefore called trimmed
correlation based-MUSIC (TR-MUSIC). In this method, no
other specific assumptions on noise are made except that the
noise samples are i.i.d., which is a necessity for the MU-
SIC method. Another good feature is that the estimated
trimmed-autocorrelation matrix retains the hermitian sym-
metric structure, thereby guarantees that eigenvalues of the
trimmed correlation matrix are real. Also, it can be applied
to real signals as well as complex signals. Simulation stud-
ies show that the proposed method performs very well even
in very impulsive noise environments where the conven-
tional MUSIC method fails to locate the correct frequencies.
A comparison with another robust method [4] demonstrates
the superior performance of the proposed method.

2. SIGNAL MODEL AND THE MUSIC METHOD

In this paper, the signals of interest are complex (real) si-
nusoids corrupted by additive noise. In general, a complex
harmonic model can be described by

x(n) =

p∑
i=1

Ai exp[j(2πfin+φi)]+w(n), n = 0, . . . , N−1

(1)
where p is the total number of signal sources and is assumed
to be known here, N is the total length of the observed data,
fi is the frequency of interest from the ith source, φi is the
phase and is assumed to be uniformly distributed in [0, 2π),
Ai is the unknown amplitude, and w(n) is the zero mean
additive noise which is impulsive in nature. In addition,
the noise samples are assumed to be i.i.d. as in the non-
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impulsive white noise case. Our aim is to find the p fre-
quencies in (1).

The MUSIC spectrum is calculated as:

SMUSIC(f) =
1

M∑
i=p+1

|sH(f)vi|

, (2)

where M is the dimension of the correlation matrix, s(f) =
[1, e−j2πf , . . . , e−j2πf(M−1)]T and vi is the eigenvector cor-
responding to the ith eigenvalue of the autocorrelation ma-
trix. Note that eigenvalues are sorted in decreasing order
since only the noise-subspace eigenvectors corresponding
to M − p smallest eigenvalues are of interest. Since the
vector s(f) is orthogonal to vi, i = p + 1, . . . , M at f =
fi, i = 1, . . . , p, the summation in the denominator of (2)
is zero. Consequently, the MUSIC method estimates the
frequencies by picking the p frequencies where SMUSIC(f)
attains peaks.

In conventional MUSIC method, autocorrelation matrix
is estimated by sample correlation, which is quite suscepti-
ble to impulsive noise. Hence, the eigen-structure of the au-
tocorrelation matrix is dramatically altered. Due to the large
and possibly infinite variance of the noise, the eigenvalues
in the signal subspace are indistinguishable from those in
the noise subspace. This result has a detrimental effect on
the conventional MUSIC method as in this case it is diffi-
cult to correctly select the M − p eigenvectors in the noise
subspace. Consequently, separation of signal and noise sub-
spaces becomes a difficult problem in the impulsive noise
scenario. Hence, in the following section, we propose a new
method to improve the applicability of the MUSIC method
in the impulsive noise case.

3. PROPOSED METHOD: TR-MUSIC

From robust statistics, we know that one approach to esti-
mate the mean is using the α-trimmed mean [5]. Here, anal-
ogous to the α-trimmed mean, we introduce the α-trimmed
correlation, or simply trimmed correlation. In the conven-
tional sample correlation calculation, all samples participate
in the calculation. However, by trimming those outlying
samples, we may improve the correlation estimate. To elab-
orate this, we first discuss the real signal case. Extensions
to complex signals are easily followed by some minor mod-
ifications.

In the real signal case, the sample correlation at time lag
m is given by

r̂xx(m) =

⎧⎪⎨
⎪⎩

1

N

N−m−1∑
n=0

x(n)x(n + m) if m ≥ 0,

r̂xx(−m) if m < 0.

(3)

Without loss of generality, we examine the case m ≥ 0. De-
noting the vector x

b = [x(0), x(1), . . . , x(N −m− 1)]T as
the lagging vector and x

f = [x(m), x(m + 1), . . . , x(N −
1)]T as the leading vector, the sample autocorrelation is
simply the inner product of these two vectors, i.e., r̂xx =
(xb)T · xf/N . In the α-trimmed correlation, the parameter
α is calculated as the proportion of outlying samples, which
is given by α = (total # of outliers)/N . To appropriately
trim the outliers, we first order the samples in the vector x

b

and x
f , thus obtaining two new ordered vectors

x
b
o = [xb

(1), x
b
(2), . . . , x

b
(N−m)]

T (4a)

x
f
o = [xf

(1), x
f

(2), . . . , x
f

(N−m)]
T , (4b)

where the samples are arranged in nondecreasing order. Once
the percent of trimming α is determined, the number of sam-
ples trimmed is set as

t = �α(N − m)� ,

where �·� denotes the largest integer that is less than the
argument. Then we trim the t smallest and largest samples
in both x

b
o and x

f
o and the remaining samples are stored for

further processing.
To determine the parameter α, a quantitative measure

is needed to detect the outliers in the samples. One such
measure is given by the Mahalanobis distance (MD) [6],
which measures the distance of the data vector to the central
mass of the whole set of data. In the case at hand, we have
only single time series and can define the MD of the scalar
random variable as

d(x(n), µx) =
[x(n) − µx]2

σ2
x

, (5)

where µx is the mean and σ2
x is the variance. Samples with

MD values larger than a preset threshold ξ are marked as
outliers. Outlying samples usually have much larger MD
than the rest. Hence, selection of the threshold ξ can be
based on the computation of the MD for the whole data set
{x(n)}N−1

n=0 .
Note that in practice, µx and σ2

x in the calculation of (5)
are unknown and must be estimated from the data. Sample
mean and sample variance could be used if there were only
very few outliers. Utilizing this approach in the presence
of a significant amount of outliers, however, makes the MD
of outliers less than those of the normal samples. Hence,
we adopt more robust estimates for the location and scale
parameters. For µx, we replace it by the sample median

µ̂x = med(x(0), x(1), . . . , x(N − 1)) . (6)

For σ2
x, we replace it by the square of the median absolute

deviation (MAD)

σ̂2
x =

(
med

{∣∣∣∣x(n) − med
0≤n≤N−1

x(n)

∣∣∣∣
})2

. (7)
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Since the autocorrelation involves temporal relationship
between samples, the temporal information of the remaining
samples after trimming must be retained. In addition, when
a sample x(n) in x

b
o is trimmed, its counterpart x(n + m)

in x
f
o should also be eliminated from correlation calcula-

tion and vice versa. However, the trimming procedures de-
scribed above does not take this into account. In the follow-
ing, we consider this problem by using set operations. We
name such kind of procedure as retrimming.

Denote the set of the time indices of samples in the or-
dered lagging vector x

b
o as

Ib = {i1, . . . , it, it+1, . . . , iN−m−t, iN−m−t+1, . . . , iN−m} .

We also define T b as the set of time indices corresponding
to the samples trimmed from x

b
o

T b = {i1, . . . , it, iN−m−t+1, . . . , iN−m} .

Consequently, the set of the time indices of the surviving
samples after trimming in x

b
o is given by

Rb = Ib − T b = {it+1, it+2, . . . , iN−m−t} .

Similarly, we can define the sets of the time indices for the
total samples, trimmed samples, and surviving samples in
x

f
o as If , T f , and Rf respectively. Note that the time in-

dices in the set If are those in Ib shifted by the autocorre-
lation lag m. Therefore, subtracting each element in T f by
m will map the time indices in T f to those in T b. We can
thus define a new index set

T̄ f = {k − m : k ∈ T f} ,

which is formed from the index set T f with each element
shifted by m. Since the trimming operation is performed on
both x

b
o and x

f
o , the complete set of trimmed samples must

be taken into account. Consequently, the time index set of
the remaining samples that will participate in the trimmed
correlation calculation is given by

R = Ib − (T b ∪ T̄ f ) . (8)

Finally, the trimmed autocorrelation is defined as

r̂tr
xx(m) =

⎧⎪⎨
⎪⎩

1

NR

∑
n∈R

x(n)x(n + m) if m ≥ 0,

r̂tr
xx(−m) if m < 0,

(9)

where NR = |R| is the cardinality of R.
The trimmed autocorrelation retains the symmetry prop-

erty since for negative lags, we only need to switch the role
of the lagging vector x

b
o and the leading vector x

f
o . This is

a desired property for the autocorrelation since it results in
a symmetric autocorrelation matrix R̂

tr
xx.

In the α-trimmed correlation, trimming is performed based
on the parameter α, which represents the percentage of out-
liers and is determined by computing the MD for the whole
data. As an alternative approach, one may trim the leading
and lagging vectors by directly computing the MD for each
sample in the two vectors and discard those samples with
MD greater than a preset threshold. Similar procedures can
be carried out to retrim samples with temporal correspon-
dence in the two vectors as done in the α-trimmed correla-
tion. However, this approach is inefficient because it needs
to evaluate the MD for each sample at each correlation lag.
If we need to calculate correlation for large number of lags,
the computational burden is formidable. In addition, we find
through the simulations that trimming based on α-trimmed
correlation yields better performance than trimming directly
based on MD. Hence, we adopt α-trimmed correlation and
utilize it to estimate the frequencies.

The trimmed correlation based MUSIC spectrum for real
signal is formed on the basis of eigen-decomposition of R̂tr

xx,
which can be readily computed as

Sr
TR−MUSIC(f) =

e
T (f)e(f)

M∑
i=2p+1

|eT (f)vtr
i |

, (10)

where v
tr
i is the noise subspace eigenvector of the trimmed

autocorrelation matrix R̂
tr
xx and e(f) = [1, cos(2πf), . . . ,

cos(2π(M − 1)f)]T . The frequencies are estimated by lo-
cating p peaks in STR−MUSIC(f) over the normalized fre-
quency range [0, 1/2] for real signals.

The proposed TR-MUSIC method can be easily extended
to complex signals case. In that case, we can order the sam-
ples according to their magnitudes and also change the MD
to reflect magnitude ordering. The rest of work is similar to
the real signal case.

4. CASE STUDIES

We use simulations to demonstrate the results obtained from
the TR-MUSIC method proposed in this paper. We show the
performance improvement of the TR-MUSIC over the MU-
SIC and also compare it with the SIGN-MUSIC proposed
in [4]. Since the complex signal case is similar to the real
signal case and the SIGN-MUSIC is only applicable to real
signals, we show a real signal example in the following.

We model the impulsive noise as α-stable noise in the
presented simulations. In the simulation, both spectrum fig-
ures and normalized mean squared error (NMSE) figure are
given for comparison. Each spectrum figure is generated by
30 overlaid independent realizations. The NMSE figure is
plotted from the results of 1000 independent Monte Carlo
runs. The total data length N is 1024. For the definition
of signal-to-noise ratio (SNR) in α-stable noise case, we
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Fig. 1. TR-MUSIC spec-
trum
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Fig. 2. SIGN-MUSIC
spectrum
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Fig. 3. MUSIC spectrum
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Fig. 4. NMSE

adopt the SNR definition in which the geometric power of
α-stable noise is used

SNR =
Ps

Pn

=
A2

(Cgγ)2/α′

C2
g

, (11)

where A2 is the signal power, γ is the dispersion of the α-
stable noise, α′ is the characteristic exponent and Cg ≈
1.7811 is the exponential of the Euler constant. To com-
pare the performance of the TR-MUSIC with the MUSIC
and the SIGN-MUSIC, we quantify the performance using
the normalized mean squared error

NMSE =
1

Nt

Nt∑
i=1

‖f̂i − f0‖
2

‖f0‖2
. (12)

In the above expression, Nt is the number of trials, ‖·‖ is
the norm of a vector, f̂i is the vector of frequency estimates
for ith trail, and f0 is the true frequency vector.

The TR-MUSIC method is applied to a real signal con-
sisting of two sinusoidal signals with frequencies f1 = 0.2
and f2 = 0.222 embedded in α-stable noise. The parame-
ters of the α-stable noise are α′ = 1.1, β = 0 and µ = 0.
To better illustrate the point that α-trimmed correlation per-
forms better than trimming based on MD only, we also plot
the NMSE curve for trimming based on MD for compar-
ison. Figures 1-3 show the spectrum estimated from the
TR-MUSIC, SIGN-MUSIC, and MUSIC, respectively, for
the SNR=5 dB. The threshold ξ is chosen to be 30. It can

be seen from these figures that both TR-MUSIC and SIGN-
MUSIC methods are capable of identifying the two frequen-
cies in the presence of impulsive noise, while the conven-
tional MUSIC completely fails. Also, from Fig. 4, we can
see that both TR-MUSIC methods have smaller MSE than
the SIGN-MUSIC method. Furthermore, the α-trimmed
based TR-MUSIC performs slightly better than the MD-
based TR-MUSIC.

5. CONCLUSION

Frequency estimation of sinusoidal signals in impulsive noise
is addressed in this paper. Conventional subspace methods,
like MUSIC, cannot guarantee to find the frequencies cor-
rectly in this scenario. A novel robust trimmed correlation
based-MUSIC method is proposed for this purpose. In cal-
culating the autocorrelation of the signal, trimming is per-
formed on both lagging and leading vectors so that outliers
are removed from the samples involved in the correlation
estimates. The autocorrelation matrix is formed based on
the trimmed correlation sequence and the frequencies are
estimated from the eigendecomposition of the trimmed au-
tocorrelation matrix. Simulations show that the TR-MUSIC
performs better than the MUSIC and another robust method
SIGN-MUSIC in impulsive noise environments.
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