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ABSTRACT

In this article three new estimators of the frequency of a single
complex sinusoid are presented. The “rotate-add-decimate” (RAD)
method of Crozier is first modified to more closely approach the
Cramer-Rao Bound, with the same computation. A second esti-
mator almost achieves the CRB above an SNR threshold approx-
imately 1dB above that of RAD. It can be shown to achieve the
CRB for high SNR using log2 N arctangents and 2N MACs. A
third method matches the SNR threshold of RAD and achieves the
CRB at high SNR with log2 N arctangents and 3N MACs.

1. INTRODUCTION

Estimation of the frequency of a single complex sinusoid arises in
many contexts, among them carrier acquisition in communications
systems, radar and other signal processing disciplines. The data
may be modeled by

xn = Aej(ωn+φ) + εn, n = 0, ..., N − 1 (1)

where ω, the angular frequency to estimated, satisfies −π ≤ ω <
π, A and φ are unknown constants, and the complex white Gaus-
sian noise εn has variance σ2. Hence the signal-to-noise-ratio
(SNR) Λ is A2

σ2 .
The Cramer-Rao bound (CRB) for the estimation of ω is given

in [1]. This is the lowest mean-square-error (MSE) that can be
achieved by any unbiased estimator. Hence the CRB is the stan-
dard to which any single-frequency estimator (SFE) is compared.

The most theoretically appealing SFE is the maximum like-
lihood estimator (MLE). It is given by the frequency of the peak
magnitude of the discrete Fourier transform (DFT). The estimator
is unbiased and yields an MSE equal to the CRB for all SNR above
an “SNR threshold” that depends on the number of data points N
[1]. Thus it is efficient in the statistical sense [2] for sufficiently
high SNR. In addition, its performance is uniform over frequency.

However, the MLE’s high computational cost has led to a search
for alternative methods that approach its performance, but with
less computation. The signal processing literature on these tech-
niques is extensive (e.g. see [3] and the introduction in [4]). All
such methods exhibit a threshold effect like the MLE, but at a
higher SNR. They may or may not achieve the CRB at SNR’s
above threshold. Also, most have frequency-dependent perfor-
mance.

The important metrics of SFE methods are computational com-
plexity, SNR threshold and how closely the estimator approaches
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the CRB near the threshold (and to a lesser extent in the limit as
SNR approaches infinity). It is desirable to minimize all of these,
but tradeoffs between them are inevitable. The choice of method
will depend upon the particular application.

In this paper three new methods are introduced which achieve
low values for all three of these metrics that perform well at all
frequencies. Two of them are of particular interest as they have
low SNR thresholds and achieve the CRB for moderate SNR. They
both require log2 N arctangents. In addition, 2N or 3N complex
multiply-add operations are required. The latter method has as low
an SNR threshold as any SFE method except the MLE.

Regarding notation, �x denotes a column vector x and �x′ is its
transpose.

2. THE RAD METHOD

As the methods introduced in this paper have the most in common
with the RAD method of [5], it will be discussed in some detail in
preparation for presentation of new results based upon it.

The RAD method makes an initial frequency estimate, ω0, us-
ing the LP method [6] with lag = 1. The RAD iteration is as fol-
lows, starting with m = 1. An auxiliary vector �v0 is initialized
to contain the data {xn}. At the mth iteration, a new correction
estimation vector �vm is generated by 1) filtering �vm−1 with a 2-
point bandpass filter centered at the (m−1)th correction frequency
ωm−1 (determined by application of LP to �vm−1) and 2) decimat-
ing the result by 2. The effect is to frequency-shift the filter at each
stage. The LP method is applied to the resulting N

2m -long modified
vector �vm to generate an mth-order correction to the (m − 1)th-
order frequency estimate ωm−1, yielding ωm to be used in the next
iteration. �vm is referred to as the “mth correction estimation vec-
tor”.

The RAD method as presented in [5] was specifically for the
case N = 3∗2J . This was done to approach the CRB as closely as
possible at high SNR, since it naturally leads to an estimate with
l = 2N

3
, the lag value which was shown in [7] to minimize the

error variance.
However, this requirement is unnecessarily restrictive for what

follows. RAD may be modified to handle other input lengths.
The improved RAD algorithm (IRAD) is given below for N =

K · 2J , where K ≤ 4:
step 0:

v(0)
n = xn, n = 0, ..., N − 1 (2)

with m = 0.
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step 1:

θm = arg

⎡
⎣N/2m−2∑

n=0

v
(m)
n+1v

(m)∗
n

⎤
⎦ (3)

step 2: if N
2m ≤ 4, go to END. Else

step 3 (“reduction”):

v(m+1)
n = v

(m)
2n + e−jθmv

(m)
2n+1, n = 0, ..., N/2m+1 − 1 (4)

set m = m + 1 and go to step 1.
END: Thus after J reduction steps the final IRAD frequency esti-
mate is given by

ω̂I = �cI
′�∆ (5)

where

�cI =

[
1

1

2

1

4
...

1

2J

]′
(6)

and

�∆ = princ
(
(I − 2Z)�θ

)
=

⎡
⎢⎢⎢⎣

θ0

princ(θ1 − 2θ0)
...

princ(θJ − 2θJ−1)

⎤
⎥⎥⎥⎦ (7)

Here princ(x) = (x + π)mod2π −π denotes the principal value of
x. I is the identity matrix and Z is the lower shift matrix. The use
of �∆ instead of �θ eliminates the need for any phase unwrapping.

Note that θm is an estimate of princ(2mω), and they are com-
bined in (5) to obtain the final ω estimate. Each reduction (4)
decreases the number of data points by a factor of 2, but increases
the pointwise SNR of v(m+1) by roughly 3dB over that of v(m),
compensating for the halving of the number of points with which
to estimate θm+1. Thus each θm will have approximately the same
MSE, at least for sufficiently high SNR.

IRAD does not achieve the CRB for any SNR. For N = 3∗2J ,
it approaches it within 0.51dB at high SNR. For N = 2M , it comes
within 0.74dB.

As noted in [5], this deficiency may be circumvented by apply-
ing an MLE-based fine search to the v subsequence defined in (4)
which contains between 8 and 16 points. Three DFT values cen-
tered on the final frequency estimate of (5) are first computed using
v. The refined frequency estimate is determined from the peak lo-
cation of a quadratic fit to these values. These additional steps
have little effect on the total computation for large N because they
operate on the short subsequence v, not on the original data. The
IRAD method including this modification will be denoted IRADF
in what follows.

Using the ideas of [8] it is possible to derive new versions of
the IRAD algorithm with better performance. This is done in the
next two sections for the case N = 2M .

3. IMPROVING THE EFFICIENCY OF THE IRAD
ALGORITHM

The improvement to IRAD proposed here uses a weighting in (5)
that is different from (6). To derive this for N = 2M , note first
that the IRAD method estimates the quantities {θm} such that⎡

⎢⎢⎢⎣
θ0

θ1

...
θM−1

⎤
⎥⎥⎥⎦ = princ

⎛
⎜⎜⎜⎝

⎡
⎢⎢⎢⎣

1
2
...

2M−1

⎤
⎥⎥⎥⎦ ω +

⎡
⎢⎢⎢⎣

ε0
ε1
...

εM−1

⎤
⎥⎥⎥⎦

⎞
⎟⎟⎟⎠ (8)

or
�θ = princ(�kω + �ε) ≈ princ(�kω) + �ε (9)

where �ε is a real, approximately Gaussian [8] random vector with
covariance Rθ .

From (7), we see that

�∆ = �e1ω + (I − 2Z)�ε (10)

where �em is the mth unit M -vector.
The MLE of ω based on this data model 1 is found by mini-

mizing
Q = (�∆ − ω �e1)

′R−1
∆ (�∆ − ω �e1) (11)

where R∆ is the covariance matrix of (I − 2Z)�ε,

R∆ = (I − 2Z)Rθ(I − 2Z)′ (12)

The solution is given by ([2], chapter 4)

ω̂ =
�e1

′R−1
∆

�∆

�e1
′R−1

∆ �e1

=
�k′R−1

θ (I − 2Z)−1�∆

�k′R−1
θ

�k
(13)

since �k = (I − 2Z)−1 �e1 =
∑M−1

m=0 2m �em.
The variance of this new “weighted IRAD” (WIRAD) estima-

tor is given by

var(ω̂) =
1

�k′R−1
θ

�k
(14)

and the weights are given by

�cW
′ =

�k′R−1
θ (I − 2Z)−1

�k′R−1
θ

�k
(15)

It remains only to determine Rθ to obtain the MLE of ω based
on �∆. It is shown in [9] that, for the IRAD method with N = 2M

and sufficiently high SNR, the kl-th element of the covariance of
�θ is approximately

R
(kl)
θ =

2min(k,l)

Dkl

(
1 +

Bkl

Dkl
+

Bkk

Dkk
+

Bll

Dll

)
(16)

where
Bkl = 2M+1 − 2max(k,l)+1 − 2min(k,l) (17)

Dkl = Λ(N − 2k)(N − 2l) (18)

and Λ is the SNR, A2

σ2 .
Note that using this relation in (13) and (14) gives weights and

variance that depend upon SNR. Since SNR is assumed not to be
known a priori, the weights are chosen to approach the CRB for
high SNR. This has been found to give good performance regard-
less of the actual SNR.

In this case we have

R
(kl)
θ ≈ 2min(k,l)

Λ(N − 2k)(N − 2l)
(19)

and �cW is independent of Λ. Using (14) for N = 32 and 128,
we find that the MSE approaches the CRB within 0.15dB for large
SNR (≥ 20dB). This is a 0.59dB improvement over the unweighted
IRAD method. This comes at the additional computational cost of
one more arctangent, and requires using the weight vector from
(15) rather than that of (6). Depending upon the application, this
may be good enough to use WIRAD instead of the more complex
IRADF.

1Note that this is not the true MLE of ω, only an approximation.
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4. EFFICIENT CORRELATION-BASED ESTIMATION

It is possible to obtain an estimator of the θm which is efficient by
using a different θm estimation strategy, which is described in the
following. The new method will be referred to as ERAD (“efficient
RAD”).

Define a lower-complexity version of the IRAD �θ estimate (3)
in which the dot product is between the even and odd points of �vm,
unlike the version in (3):

θm = arg

⎡
⎣N/2m+1−1∑

n=0

v
(m)
2n+1v

(m)∗
2n

⎤
⎦ (20)

It is shown in [9] that, for this choice of θm, Rθ ≈ 2
NΛ

I at high
enough SNR Λ. It is also shown in [9] that the associated estimator
is efficient in this situation. This is a consequence from the lack of
correlation between the ERAD θm estimates.

The corresponding weight vector�cE is then obtained from (15)

�cE
′ =

�k′(I − 2Z)−1

�k′�k
(21)

It can be shown that the ERAD frequency estimate can be written
as

ω̂ = �cE
′�∆ =

N2

N2 − 1

M−1∑
m=0

∆m

(
1

2m
− 1

22M−m

)
(22)

where ∆m is the mth element of �∆. Thus the weighting can be
done using only shifts, adds and one real multiply by N2

N2−1
.

Equations (2), (20), (4) and (22) define the ERAD algorithm.
As we shall see from the simulations in the next section, this es-
timator effectively achieves the CRB for SNR only slightly above
the threshold.

The disadvantage of ERAD is that its SNR threshold is slightly
higher that that of WIRAD. This is because the WIRAD dot prod-
ucts in (3) are roughly twice as long as those of ERAD in (20).
This results in less noise in the WIRAD θm estimates. However, it
introduces correlation between them, reducing WIRAD efficiency
at high SNR.

A modification to ERAD is introduced in [9] that combines
the lower SNR threshold of WIRAD with the statistical efficiency
of ERAD. The idea is to make this modified ERAD (MERAD)
behave like ERAD at medium-to-high SNR and like WIRAD at
low SNR. This is done by computing both of the dot products used
in the ERAD and WIRAD θm estimates at each stage. The one
which should give better results is used to compute θm used in (4)
and (7). See [9] for details.

5. SIMULATIONS

In this section we present simulations for comparison of the new
methods with some existing SFE methods. Here we define the
SNR threshold as the lowest SNR at which 1) the MSE is within 1
dB of the CRB and 2) the MSE is never more than 1 dB from the
CRB at higher SNR.

Figure 1 shows the performance of the new methods in com-
parison to IRAD and IRADF for N = 32 with f = 0.2Hz. Abscissa
values represent the data SNR, Λ, in dB. The ordinate values of
these plots are 10 log10(1/(mean-square estimation error)) for the
number of realizations simulated, Nr . These plots will be referred

to as “MSE-vs-SNR” plots. Note that the CRB appears as a unity-
slope line in this log-log format. Nr is 107 in all cases.

As expected, the MLE performs best, with an SNR threshold
of -0.15dB, and is within 0.1dB of the CRB for SNR above 2dB.
IRAD never approaches the CRB within less than 0.74dB, but ap-
proaches within 0.1dB of this asymptote for SNR above 10dB.

IRADF is the best performer of the non-MLE methods, with a
threshold of 1.0dB. It is within 0.1dB of the CRB for SNR above
4dB and comes within 0.03dB of the CRB at high SNR, as noted
in [5].

Considering the new methods, WIRAD has a threshold of 1.4dB
and is within 0.2dB of the CRB for SNR above 12dB. However, it
approaches the CRB only within 0.15dB at high SNR, as predicted
in section III.

ERAD has an SNR threshold of 1.75dB, 0.35dB higher than
WIRAD due to the smaller length of the dot products in (20) rel-
ative to (3). However, comes within 0.1dB of the CRB for SNR
above 7dB and is efficient at high SNR.

MERAD has an SNR threshold of 1.2dB, 0.2dB below WIRAD.
It has almost the same MSE as ERAD above the ERAD SNR
threshold, as it was designed to do. However, it doesn’t approach
the CRB as closely as IRADF until the SNR is above 8dB, at which
point it is within 0.05dB of the CRB. Like ERAD, it is efficient at
high SNR.

Fig. 1. 10 log10(1/MSE) vs. SNR, N= 32, ω
2π

= 0.20 Hz

Figure 2 shows the threshold-vs.-frequency performance of
the same methods as in figure 1. The observed SNR threshold
(as defined above) is plotted versus frequency. The threshold is
estimated by linearly interpolating the MSE-vs-SNR curves (sam-
pled every 0.25dB) to estimate the SNR at which the MSE differs
from the CRB by 1dB.

The threshold-vs.-frequency results are shown only for posi-
tive f since the performance for each algorithm considered here
was found to be symmetric about f = 0.

Note that the relative performance of these algorithms is roughly
constant versus frequency, though the absolute thresholds worsen
slightly as f approaches 0.5 for all methods, even the MLE.
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Fig. 2. SNR threshold (dB) vs. frequency, N= 32

6. COMPLEXITY-PERFORMANCE TRADEOFFS

Details of the computational requirements of these methods and
others are discussed in [9]. Of those in the figures, only IRADF
has a sizeable constant overhead that is not a function of N . This
is due to the fine search, which must operate on a v subsequence
of length 16 in order to approach the CRB within 0.03dB for high
SNR [5]. Using a shorter v for the fine search is possible, but
will result in not as close an approach to the CRB, reducing the
performance advantage of IRADF over other methods.

However, since the fine search overhead is constant, IRADF is
preferable to IRAD and WIRAD when N is large (see [9]), since
it is closer to the CRB, has a lower threshold and has essentially
the same complexity. In fact, IRADF seems to be the best non-
MLE algorithm for large N if the user does not insist upon actually
reaching the CRB at high SNR. If efficiency is required, MERAD
is most suitable.

The situation is different for smaller N , where the MLE thresh-
old is closer to those of several competing lower-complexity meth-
ods. For N = 32 the fine search overhead of IRADF is about 40
percent of its complexity. Hence, if a slight decrease in perfor-
mance is acceptable, MERAD may be used instead of IRADF to
eliminate the fine search and save significant computation.

More savings are possible if a slight increase in SNR threshold
is permissible. In this case ERAD may be used instead of IRADF
or MERAD to save another 1

3
of the computation, while maintain-

ing statistical efficiency at high SNR.

7. CONCLUSION

In this paper three new versions of the RAD SFE algorithm of [5]
have been introduced. After a discussion of an improved RAD
(IRAD) method, it is shown how to modify it so that it more
closely approaches the CRB for N = 2M . This is done by deriving
a weighting of its intermediate frequency estimates. A technique
similar to that used in [8] to derive the “phase average” algorithm
was used here to obtain a new more efficient phase-based SFE. The
new algorithm, WIRAD, has essentially the same SNR threshold
as IRAD, similar computational complexity, and only a change of
multiplicative constants in (6) is required.

It is also demonstrated with simulations that IRAD can be
modified to actually achieve the CRB for SNR sufficiently above
the threshold. This is done by using an alternative definition of
the intermediate frequency estimates. In [9] the resulting method
(ERAD) is shown theoretically to be efficient for high SNR. It
reduces computation by 1/3 relative to IRAD. However, ERAD
raises the SNR threshold slightly since it uses dot products shorter
than IRAD and IRADF, resulting in noisier estimates of the {2mω}.

Finally, the heuristic MERAD algorithm has been developed
(see [9]) that combines the best features of ERAD and IRAD. It is
designed to behave like the former at high SNR (i.e. achieve the
CRB) but like the latter at low SNR (i.e. to have the lowest possible
SNR threshold). This is done for almost the same computational
load as IRAD and, unlike IRADF, requires no fine search.

It should be noted that the ERAD and MERAD algorithms,
though best suited for N = 2M , can also be derived for N = K2J

using the approach outlined in [10]. These algorithms have low
SNR thresholds and are efficient at high SNR as well.

Note that the new algorithms may be recast in on-line forms
which process each sample as it arrives. See [5] for details for the
N = 3 ∗ 2M−2 case.

8. REFERENCES

[1] D. C. Rife and R. R. Boorstyn, “Single-Tone Parameter Es-
timation from Discrete-Time Observations,” IEEE Trans. on
Information Theory, Vol. IT-20, No. 5, pp. 591-598, Septem-
ber 1974.

[2] S. Kay, Fundamentals of Statistical Signal Processing, Vol-
ume I; Estimation Theory, Prentice Hall, 1993.

[3] M. Fowler, “Phase-based Frequency Estimation: A Review,”
Digital Signal Processing, Vol. 12, pp. 590-615, 2002.

[4] T. Brown and M. M. Wang, “An Iterative Algorithm for
Single-Frequency Estimation,” IEEE Trans. on Signal Pro-
cessing, Vol. 50, No. 11, pp. 2671-2682, November 2002.

[5] S. Crozier and K. Gracie, “Low Complexity Frequency Esti-
mation with Close-to-Optimum Performance for QPSK and
Offset-QPSK Modulated Signals,” Proc. 9th International
Conference on Wireless Communications (Wireless97), Cal-
gary, Alberta, Canada, pp. 294-306, July 9-11, 1997.

[6] L. B. Jackson, D. W. Tufts, F. K. Soong and R. M. Rao,
“Frequency Estimation by Linear Prediction,” Proceedings
of ICASSP-1978, pp. 352-356, 1978.

[7] G. W. Lank, I. S. Reed and G. E. Pollon, “A Semicoherent
Detection and Doppler Estimation Statistic,” IEEE Trans. on
Aerospace and Electronic Systems, Vol. AES-9, pp. 151-165,
1973.

[8] S. Kay, “A fast and accurate single frequency estimator,” IEEE
Trans. on Acoustics, Speech and Signal Processing, Vol. 37,
pp. 1987-1990, December 1989.

[9] J. D. Klein, “Fast Algorithms For Single Frequency Estima-
tion,” submitted to IEEE Trans. on Signal Processing, July
2004.

[10] J. D. Klein, “Recursive Single Frequency Estimation,” Pro-
ceedings of ICASSP-2001, Vol.5, pp. 3077-3080, May 2001.

IV - 392

➡ ➠


