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ABSTRACT

We propose a simple, novel and efficient method for gen-
erating complex half-band FIR filters, which we use in the
generation of discrete-time analytic (DTA) signals. These
filters have properties of linear phase and real-time imple-
mentation while the DTA signals generated are orthogonal
and invertible (the original real signal is recoverable). The
filter design, in contrast to some other methods, is easily
scalable and stable. The new method is evaluated for per-
formance (i.e. aliasing) by comparing its shiftability [10]
property with that of other transforms. Using a total vari-
ation measure for determining function variation, we see
that its shiftability either matches or exceeds that of other
methods. Furthermore, this design method lends itself to an
enhancement [1], thereby allowing additional improvement
in shiftability. We prove an important theoretical aspect
of the new method: the amplitude spectrum of the length
N filter converges almost everywhere to the ideal complex
half-band amplitude spectrum as N → +∞, thereby assur-
ing shiftability.

1. INTRODUCTION

In this work we describe a new method for generating a fil-
ter that we use for generating discrete-time analytic (DTA)
signals. Filter characteristics and convergence issues are
treated. The filter, as also the DTA signal generated have
a number of properties that either equal or exceed those by
other methods.

Where the context is clear, we will henceforth use the
term “analytic” signal to refer to DTA signals. Methods
currently used for generating analytic signals may gener-
ally be classified as belonging to one of two classes: either
the signal is operated on directly in the frequency domain
or filters are involved for their generation. In the former
class we have the method of [6], [5] and its extension [1].
Methods based on filter design generally fall under one of
two procedures: In the first, a lowpass half-band FIR filter
[3], [8] is designed and the spectrum shifted to the right by
π/2, to form a complex half-band filter. Output of these
filters provide the analytic signal. The second procedure
uses Hilbert transformers [7] to generate FIR filters, which
are then used to form the imaginary part of the analytic
signal. Adding a delayed version of the real signal provides
the analytic signal. Finally, pairs of IIR filters [[7], p.795]
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in quadrature have also been used to generate the real and
imaginary parts of the analytic signal.

In the generation of DTA signals, we seek some desir-
able properties: The analytic signal should be “invertible”
and orthogonal. That is, it should be possible to recover
the original real signal from the analytic signal and the real
and imaginary parts should be orthogonal. For the filter,
desirable properties are generalized linear phase and real-
time implementability. For our purposes here, we shall for
convenience make reference to all four properties - invert-
ibility, orthogonality, linear phase and real-time - all in the
context of the analytic signal or filter itself, rather than pre-
scribing them individually to the DTA signal or the filter.
We also consider algorithm efficiency. Lastly and critically,
we need to measure how well the spectrum of the analytic
signal approximates the ideal one-sided spectrum.

We provide a brief background on the existing tech-
niques in Section 2. The new method is described in Sec-
tion 3. Filter frequency response is determined in Section
4 and convergence established in Section 5. Properties of
the filter are established in Section 6. Experimental results
and conclusions are given in Sections 7 and 8 respectively.

2. BACKGROUND

The frequency domain method [6], [5] for generating DTA
signals is implemented by the Matlab7 algorithm hilbert.
Discrete Fourier transform (DFT) coefficients of the given
real signal are modified in a simple way: Discrete nega-
tive frequency terms, that is, those lying in −π < ω < 0
are set to zero. Discrete positive frequency terms lying
in 0 ≤ ω ≤ π are multiplied by 2, except those at the
end-points 0, π, which are multiplied by 1. The other fre-
quency domain technique [1], referred to as ehilbert extends
the standard frequency domain method: The continuous
spectrum (the Discrete-time Fourier transform (DTFT))
of the real signal is forced to have one additional zero in
the negative frequencies. Increasing attenuation in the re-
gion ω ∈ (0,−π) further reduces the single-sideband band-
width and consequently decreases aliasing under decima-
tion. With respective to the aforementioned properties, the
DTA signal generated by hilbert is orthogonal and invert-
ible. It is not real-time since the entire signal is needed
before generation of the DTA signal. With ehilbert, orthog-
onality of hilbert is lost.

In the first of filter design procedures, we consider gener-
ation of lowpass filters: An optimal lowpass filter is designed
and the spectrum shifted by π/2 to the right to generate

IV - 3810-7803-8874-7/05/$20.00 ©2005 IEEE ICASSP 2005

➠ ➡



a complex half-band filter. In [3] the lowpass filter used
is an “optimal” Daubechies scaling filter. This transform
is invertible and real time, but does not have linear phase
and lacks orthogonality. The second example is that in [8].
Here, the FIR, lowpass filter is an equiripple design. This
transformation is invertible (this can be proven using propo-
sition [[3], Sec.2.2, Proposition 1]), real time, linear phase
and orthogonal. The second filter design procedure uses
Hilbert transformers for the generation of analytic signals.
The first method approximates the Hilbert transformer us-
ing the Fourier series representation and a Kaiser window.
The other uses an equiripple approximation. In both these
cases, we have invertibility, real-time implementation, lin-
ear phase and orthogonality. Lastly, using IIR filter pairs
[[7], p.795], does not give invertibility.

3. THE NEW METHOD

In this paper, we propose a simple procedure for filter
design, using the frequency domain method hilbert. It pos-
sesses all the four properties of invertibility, orthogonality,
generalized linear phase and real-time implementation. It
is easily scalable and stable. We prove that the frequency
response converges almost everywhere to the ideal response
as N → ∞. The design is also efficient in that for even
N , it has the smallest number of non-zero coefficients. The
degree of attenuation in the region (−π, 0), or equivalently,
the aliasing generated when the filter output is downsam-
pled, is determined by the shiftability [10] property. Lastly,
shiftability can always be improved upon using ehilbert [1].

We design a filter such that the output to a real signal
is an analytic signal. We start with an impulse function
of length N , shifted by N/2, ((N − 1)/2) when the length
of the desired filter is even, (odd respectively). The choice
of the shift assures generalized linear phase. This delayed
impulse is operated on by the function hilbert [6] to gener-
ate the corresponding DTA signal. These signal coefficients
constitute the proposed DTA filter. We will prove that as
N → ∞, the DTFT amplitude of the DTA filter converges
almost everywhere to the function

G(ejω) =

{
2, 0 < ω < π
0, −π < ω < 0
1, ω = 0, ω = π.

(1)

To establish behavior for large N we first need to de-
termine the expression for the frequency response of the
N-length DTA filter. Convergence is then established for
N → ∞.

3. EXPLICIT FORMULA OF THE DTFT OF

THE NEW DTA FILTER

3.1. Case when N is a multiple of 4

Let x(n) be the discrete impulse of length N , where N is a
multiple of 4, shifted by N/2. i.e.,

x(n) =

{
1, n = N/2
0, 0 ≤ n ≤ N − 1, n �= N/2.

Applying algorithm [6] to x(n), we obtain the expression
of the DTA signal z(n), [[1], Eqs. (1), (2)]. For n even, we
have

z(n) = x(n)+j(2/N)

N/2−1∑
p=0

x(2p+1) cot(π(n−(2p+1))/N),

and for n odd

z(n) = x(n) + j(2/N)

N/2−1∑
p=0

x(2p) cot(π(n − 2p)/N).

z(n) constitutes the impulse response of the DTA filter.
We observe the efficiency of the representation here. The
only non-zero even element of x(n) is at n = N/2 , which
is an even index, and equal to 1. Therefore,

z(n) =

{
0, n even, n �= N/2
1, n = N/2
j(2/N) cot( π

N
n − π

2
), n odd.

(2)

3.2. Case when N even and N/2 odd

Similarly to the above, for the case N even and N/2 odd,
the impulse response of the DTA filter is given by

z(n) =

{
j(2/N) cot( π

N
n − π

2
), n even

0, n odd, n �= N/2
1, n = N/2.

(3)

In this case also we observe that the only non-zero odd
element of x(n) is at n = N/2 , which is an odd index, and
equal to 1. Therefore we conclude that for the case N even,
about half of the DTA filter coefficients are equal to zero.

Formulae for N odd are given in [[2], pp. 39-43]. The
derivation of the DTFT Z(ejw) of z(n) is long and we pro-
vide only the main results here. Details can be found in
[[2], pp. 34-44].

Z(ejω) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e−jωN/2{1 + 4
N

∑N

4
−1

n=0 tan( π
N

(2n + 1))
sin(ω(N

2
− (2n + 1)))}, for N a multiple of 4

e−jωN/2{1 + 4
N

∑ 1

2
( N

2
−1)

n=1 tan( π
N

2n)
sin(ω(N

2
− 2n))}, for N even N/2 odd

e−jω N−1

2 {1 + 2/N
∑N−1

2

n=1

cos( πn

N
)−(−1)n

sin( πn

N
)

sin(nω)}, for N odd.

(4)

4. CONVERGENCE

The closed form expression Z(ejω) of the N-point DTA fil-
ter is used to establish convergence for N → ∞. We can
show that its amplitude converges almost everywhere to the
function in equation (1).

The proof is available for N = 2p, where p is a positive
integer. Other cases, (i) N is even and N/2 odd and (ii) N
is odd, are presently under investigation.
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Theorem 1: The function

|H(ejω)| = |1+
4

N

N

4
−1∑

n=0

tan(
π

N
(2n+1)) sin(ω(

N

2
−(2n+1)))|

converges almost everywhere to G(ejω) given by equation
(1), when N → +∞ and N = 2p, where p is a positive
integer .

Proof : The proof can be found in [[2], pp. 45-47].

5. PROPERTIES OF THE NEW DTA FILTER

5.1. Generalized Linear Phase

Theorem 2: The DTA filter has generalized linear phase.

Proof : The proof follows from equation (4).

5.2. Orthogonality

Theorem 3: The real and imaginary parts of the DTA fil-
ter are orthogonal.

Proof : The proof can be found in [[2], pp. 47-49].

5.3. Shiftability

Theorem 4: The DTA filter realizes shiftability.

Proof : By Theorem (1), we conclude that in the limit
as N → ∞, the frequency response of the DTA filter ap-
proaches the ideal response. Hence the DTA filter realizes
shiftability.

6. EXPERIMENTAL RESULTS

A basic issue in the design of DTA filters is in the “good-
ness” of approximation to the ideal. While this may be mea-
sured in many ways, such as mean-square error, we consider
measuring it here in the context of a particular application.
That is, we measure the aliasing generated when the cor-
responding DTA signal is subsampled. Such applications
occur in the design of complex wavelets [9]. Aliasing is con-
veniently measured using the property of shiftability [10].

Shiftability is seen as follows: In the critically sampled
wavelet transform, translation of the input signal leads to
transform coefficient energy moving both within and across
subbands. However, it is possible that the information con-
tained within a subband remain within the subband after
signal translation. Necessary and sufficient conditions for
this is the Nyquist criterion [10]. Accordingly, subsampling
leading to a variation in subband-energy reflects the pres-
ence of aliasing.

We compare shiftability of the DTA filters with that by
the new method. This involves applying an impulse to a
DTA filter to generate an analytic impulse. This is applied
to a critically sampled wavelet filter bank. Coefficient en-
ergy at each subband level is measured as the input impulse
is cyclically translated. Constant subband-energy implies
shiftability.

In our experiments we use a Daubechies’D8 filter bank
at M -levels (wfilters(‘db8’) in Matlab7). This particular fil-
ter bank is chosen since it has been shown [[3], Sec.3.3,
Proposition 1] that using the Strang-Nguyen model [[11],
p. 172] for the Daubechies’D8 scaling filter, and using a
Daubechies DTA filter of length N satisfying the conditions
of Proposition 1, shiftability is obtained. The value N = 28
was used. Accordingly we compare performance of all our
DTA filters using this model: A Daubechies’D8 critically
sampled wavelet filter bank, DTA filters of size N = 28 and
M = 3. Where filter sizes need to be odd, we use N = 27.

DTA filters were generated by all five methods: The
first one was a lowpass Daubechies (LP daub) scaling fil-
ter (Daubechies’D14 filter) of length 28 shifted by π/2 [3].
Another lowpass filter [8] (LP equiripple) of length 27 and
transition band width of 0.16π was generated using the
function firpm in Matlab7. Two complex half-band fil-
ters of length N = 27 were generated using Hilbert trans-
formers. The first (HT equiripple) [[7], pp. 792-794] was
designed using the function firpm with the option Hilbert
and the passband frequency range [0.1π, 0.9π]. The second
(HT windowed) [[7], p.795] was the Fourier series approx-
imation with a kaiser window using β = 3.227. This was
derived taking the minimum attenuation between 21 and
50 dB. For the new method, a length 27 complex half-band
filter was generated. (An impulse of length 28 was used.
Since the first element of the DTA is zero, by equation (2),
we consider the length as 27).

The five DTA filters were used to generate analytic im-
pulses. Subband-energy was measured at the 3 levels of a
critically sampled discrete wavelet transform (Daubechies’
D8 filter) over 16 circular shifts of the input impulse. Figure
(1) shows the transform subband-energy at different scales,
as a function of input signal shifts. Results for [3] are not
shown since they did not compare favorably. At level-1
highpass, we observe that the new method out performs all
others. Better shiftability is also attained at the two other
subbands, although by not as large an amount.

For a quantitative measure of performance, we measure
the variation of subband-energy using the concept of total
variation. The latter is defined as TV =

∑16

n=1
|xk −xk−1|,

where xk represents subband-energy. We use the ratio of
TV new method and TV other method for comparison. Re-
sults are shown in Table 1, where the small numbers indi-
cate much superior performance with the new method.

Improved shiftability, that is a further reductions in
aliasing, can be obtained by applying ehilbert [1] instead
of hilbert to the delayed input impulse. We choose to zero
the negative spectrum at an additional negative frequency
ω = −2.0415. We use the ratio TV ehilbert and TV hilbert
for comparison. Results are shown in Table 2. We see that
with the new method we have reduced aliasing in all levels
except that at Level-2 highpass where the results are close.

The new method is efficient since for the case N even,
about half the filter coefficients are equal to zero, as shown
in equations (2), and (3). The only other method where
this efficiency also occurs is in HT windowed. We note that
the HT equiripple design using the Matlab7 function firpm
is still not stable for large N , as also concluded in [8]. This
is due to the recursive algorithm which causes rounding
machine errors. The new method is stable for all N .
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Methods Level-1 highpass Level-2 highpass

LP daub 0.00227 0.80658
HT windowed 0.13275 0.87737
HT equiripple 0.09366 0.87185
LP equiripple 0.01359 0.86547

Methods Level-3 highpass Level-3 lowpass

LP daub 0.67797 0.22899
HT windowed 0.86296 0.71851
HT equiripple 0.84548 0.65256
LP equiripple 0.83910 0.64381

Table 1: Comparison of the total variation (TV) at each
level.

TV of DTAF using ehilbert
TV of DTA using hilbert

Subband level

0.78302 Level-1 highpass
1.01261 Level-2 highpass
0.98746 Level-3 highpass
0.77648 Level-3 lowpass

Table 2: Comparison of the total variation (TV) at each
level.
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Figure 1: Comparison of shiftability for the three methods.
(a) Level-1 highpass subband-energy,(b) Level-2 highpass
subband-energy,(c) Level-3 highpass subband-energy,(d)
Level-3 lowpass subband-energy.

7. CONCLUSION

We have proposed a new method for generating a DTA
signal using the function hilbert. This method satisfies in-
vertibility, orthogonality, linear phase and real-time imple-
mentability. Its shiftability property and efficiency, are
equal to or better than those from all other methods. It
is stable for large N . Further improvement in shiftability
can be obtained using the extension ehilbert.
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