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ABSTRACT

Adaptive infinite impulse response (IIR), or recursive, filters are 

less attractive mainly because of the stability and the difficulties 

associated with their adaptive algorithms. Hyperstability is a 

concept from nonlinear stability theory and its convergence is 

directly related to strictly positive real (SPR) transfer functions. 

The simple hyperstable adaptive recursive filters (SHARF) is a 

simplified version of hyperstable recursive filters designed for 

real time applications. In this paper, SHARF is investigated 

using constraint recursive least-squares (RLS) method with SPR 

transfer functions designed without any priori knowledge of the 

parameters of the filter by the pole-zero placement on the unit 

circle method. To demonstrate its fast convergence and self-

adjustment, SHARF algorithm is applied to a pure four-pole 

autoregressive process.

1.  INTRODUCTION 

Adaptive infinite impulse response (IIR), or recursive, filters 

have the advantage over finite impulse response (FIR) filters by 

requiring fewer coefficients and less computational cost. 

However, adaptive IIR filters are instable during adaptation due 

to their nonlinear phase property, which limits their practical 

implementations [1,2]. The adaptive IIR algorithm is formulated 

using output error identification method via hyperstability. 

Hyperstability, proposed by Popov, is a concept from nonlinear 

stability theory, which is used to develop real time adaptive 

recursive filter. The hyperstability theory is first applied to 

applications in control systems, then simplified and adapted into 

the adaptive digital signal processing applications by Landau and 

others [3]. The hyperstable adaptive recursive filter (HARF) 

represents the modification of the hyperstable output error 

identification method. The simple hyperstable adaptive recursive 

filter (SHARF), the simplified version of HARF, is more suitable 

for real time applications with a lower computation but slower 

rate of adaptation with the least mean squares (LMS) method 

[1,4,5]. The convergence of the hyperstability theory is directly 

related to SPR transfer function. The design of SPR requires the 

knowledge of unknown filter parameters. This undesirable 

characteristic of SPR initiated efforts to minimize the designer 

efforts, which lead to new methods with different degree of 

complications [6]. In this paper, a new algorithm is investigated 

in order to design SPR transfer functions without any prior 

knowledge of filter parameters. The pole-zero placement on the 

unit circle method related the numerator and denominator 

coefficients of SPR transfer function through fundamental 

coefficients. The fundamental coefficients are updated using a 

constrained recursive least-squares (CRLS) method. Section 2 

gives a background on SHARF algorithms and SPR transfer 

functions. The design process of the self-adjusting SHARF 

algorithm with SPR transfer function model using pole-zero 

placement on the unit circle method and CRLS method is 

illustrated in Section 3. In Section 4, self-adjusting SHARF 

algorithm is applied to a pure four-pole autoregressive process to 

demonstrate its fast-convergence and self-adjustment.

2. BACKGROUND 

The hyperstable adaptive recursive filter (HARF) is an early 

version of the application of hyperstability to signal processing 

and suffers many setbacks, which made it very hard to 

implement. The simple hyperstable adaptive recursive filter 

(SHARF) is a simplified version of HARF designed to apply for 

real time applications [4]. The SHARF algorithm consists of an 

input signal x(n) and output signal y(n), which closely 

approximates the desired signal d(n) (Fig. 1). 
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Fig. 1 Simple Hyperstable Adaptive Recursive Filter (SHARF) 

The error signal e(n) is defined as: 
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Hyperstability is directly related to SPR transfer functions. 

Because the autoregressive form 1/A(z) fails to be SPR in 

general, the  system is guaranteed to be SPR by adding C(z) 

function [5]. The output of C(z) is the moving average of the 

error signal, which can be defined as [5]: 
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The minimum mean square error formulates the performance of 

the algorithm through the cost function Jv(n). The cost function 

of the error signal Je(n) and the cost function of the moving 

average of the error signal Jv(n) can be defined as: 

)n(2vE
2

1
)n(

v
Jand)n(2eE

2

1
)n(

e
J               (3) 

IV - 3770-7803-8874-7/05/$20.00 ©2005 IEEE ICASSP 2005

➠ ➡



The transfer function G(z) in Fig. 1 can be written as:
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where, aj are the coefficients and N is the order of the 

autoregressive process, and the order M and the error smoothing 

coefficients ci are chosen by the designer so that G(z) is SPR [5].  

The system in Fig. 1 is hyperstable if and only if G(z) is SPR, 

that is G(z) must have a positive real part, i.e. [5]; 

1zfor,0)z(GRe (5)

The problem is that the denominator coefficients of G(z), a 

required source for adaptation, is unknown.

3. SELF-ADJUSTING SHARF ALGORITHM 

3.1 SPR Transfer Function Design 

The unknown denominator coefficients can be estimated by 

designing an SPR transfer function using pole-zero placement on 

the unit circle method. This method is proven to be robust for 

IIR band-rejection filter algorithm [7]. The transfer function G(z)

can be designed by cascading N second-order SPR transfer 

functions. The pole-zero placement method locates the zeros on 

the unit circle while the poles are located inside the circle at a 

radial distance from the zeros. However, the zeros are located 

inside and near the unit circle, not on the unit circle, for the 

reason explained at the end of this section. The zeros and the 

poles of the SPR transfer function G(z) are expressed as [7]: 
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where, i and i are the distances of zeros and poles from the 

origin respectively, and i is the angle of the poles and zeros 

(Fig. 2).   
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Fig. 2 Pole-zero placement on the unit circle method 

The transfer function G(z) can be written as [7]: 
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where, T is the sampling period. The system in Fig. 1 is 

hyperstable if and only if G(z) is SPR. The real part of a second-

order transfer function G(z) is a quadratic equation and can be 

written in the frequency domain as: 
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The transfer function G(z) is SPR if and only if the discriminant 

of equation (8a) is strictly negative as: 
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Fig. 3 illustrates that G(z) is SPR for only certain conjugate pole-

pairs, where region of SPR is shaded for different  values in 

relation to the unit circle. Notice, however, for =1, the 

discriminant of equation (8b) is always positive and G(z) is not  

an SPR. Thus, the zeros must be located inside and near the unit 

circle. In reference [5], the region of SPR is illustrated with no 

smoothing coefficient and with a single smoothing coefficient c1.

In this paper, the region of SPR is illustrated with double 

smoothing coefficients, c1 and c2 (Fig. 3). 

Fig. 3 Illustration of SPR region (shaded area) for second-order 

system with double smoothing coefficients 

3.2 Adaptive Algorithm 

The coefficients of the multiple order transfer function G(z) are 

calculated by convoluting the coefficients of N second order 

SPRs as follows: 
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The coefficients ci and ai of G(z) are functions of only i, i, and 

i, which are the fundamental coefficients to optimize the design 

of G(z) and are assumed to be independent. The fundamental 

coefficients are updated using recursive least-squares (RLS) 

method. A possible objective function for adaptive IIR filtering 

based on output error is the least-squares function defined as: 
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where,  is the forgetting factor and is usually chosen in the 

range 0 <<  <1. RLS method for adaptive IIR filtering is 

derived with the following steps: 
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where, Sd(n) and Sd(n+1) are 2Nx2N matrix and Sd(n) is initially 

set to unit matrix. Using RLS method, the fundamental 

coefficients are updated as follows: 
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The above equations constitute the constrained RLS method for 

the SHARF algorithm.   

4. APPLICATION AND SIMULATION 

The self-adjusting SHARF algorithm is applied as an output 

error identification structure, where filter order matching is 

assumed.  The desired signal d(n) is an autoregressive process 

generated by a four-pole resonator: 
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where, (n) is a zero mean unit variance gaussian white process.  

Using polar coordinates, the poles and the zeros of the resonator 

are located at: 
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The poles and zeros correspond to the following values of the 

fundamental coefficients 1 and 2:

5556.0
2

,8819.0
1

                                              (14c) 

where, the sampling frequency is fs=128 Hz. The coefficients of 

the transfer function G(z) are calculated from the convolution 

operations. The fundamental coefficients are updated using the 

following recursive gradient formulas:   
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The convergence of the filter is guaranteed via the desired 

location of the poles and zeros, which are in the region of SPR 

with the selected values of 1 = 0.99 and 2 = 0.90 (Fig. 3). After 

each fundamental coefficient is initially set to a random location 

within the unit circle, the fourth order output error identification 

filter converges to its optimum performance after 9k iterations 

with a forgetting factor =0.98. The final locations of the zeros 

are at ( T)9966.9(29898.0 ) and ( T)9968.19(28999.0 )

while the final locations of the poles are at 

( T)9966.9(28599.0 ) and ( T)9968.19(27601.0 ) which are 

very close to desired locations. The zeros are observed to 

converge first while poles follow after. The fundamental 

coefficient 1 converges rapidly toward its optimum value after 

4k iterations while other fundamental coefficients 1, 2, 1, 2,

and 2 experientially converge toward their optimum values  

after 9k iterations. The adaptation processes for the fundamental 

coefficients of the fourth-order output error identification filter 

are illustrated in Fig. 4, 5, and 6. The cost function of the error 

signal Je(n) and the cost function of the moving average of the 

error signal Jv(n) converge asymptotically to the variance of the 

noise as the algorithm converges to its optimum state (Figure 7).  

Finally, the output signal y(n) closely approximates the desired 

signal d(n) as illustrated in Figure 8. 
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 Fig. 4 Adaptive process of 1 and 2
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Fig. 6 Adaptive process of 1 and 2
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Fig. 8 The desired signal d(n) and the output signal y(n)

5. CONCLUSION 

When applied without any self-adjusting algorithm, SHARF 

algorithm presents a burden on the designer in establishing a 

SPR transfer function. However, when the SPR transfer function 

is designed using pole-zero placement on the unit circle method, 

the SHARF algorithm is made self-adjusting through a biased 

cost function. In addition, the convergence rate of SHARF 

algorithm is faster with CRLS method. With this unique 

structure, the adaptive IIR filter has been successfully 

demonstrated in the output error identification structure.
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