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ABSTRACT

Fast adaptive algorithms targeted for low-resource
implementation on oversampled filterbanks are discussed. First,
simplifications to the Pseudo Affine Projection (PAP) are
proposed that decrease the computation cost without degrading
the performance. Next, the sequential update PAP algorithm is
proposed to further decrease the computational complexity. It is
shown that, unlike the partial update fast affine projection,
increasing the decimation rate of the partial update algorithm
does not lead to more aliasing in the sequential update PAP.
Moreover, it is experimentally observed that with proper
regularization or step-size scaling, the convergence rate of the
sequential PAP is identical for various decimation factors of the
partial update. The proposed methods are implemented and
evaluated on a low-resource oversampled filterbank platform.

1. INTRODUCTION

This research explores efficient and advanced methods of low-
resource adaptive processing for acoustic echo cancellation. Due
to the many known advantages of subband adaptive filters over
time-domain filters, the system is targeted for low-resource
oversampled subband adaptive filters (OS-SAFs). We have
already investigated the use of Affine Projection Algorithm
(APA) on OS-SAFs [1] as a superior adaptation technique.
Considering the colored nature of oversampled subband signals,
APA provides faster convergence than the NLMS algorithm
while avoiding the high computation cost and instability
associated with the recursive least squares. We recently proposed
to further reduce the complexity of fast APA (FAPA) [2,3] by
combining it with Partial Filter Update (PFU-FAPA) [4]
employed on low-resource OS-SAF platforms. From a
theoretical view, polyphase models based on delay-chain perfect
reconstruction (PR) filterbanks were presented in [5] for various
types of partial update LMS algorithms. The results were then
extended in [6] to include PFU-FAPA. It is shown [6] that the
polyphase filterbank model of the “transformed” version of the
adaptive filter in PFU-FAPA (the “fast” adaptive coefficient
vector in [2]) constitutes a PR filterbank. However, the
polyphase filterbank model of the autocorrelation estimation part
in PFU-FAPA does not represent a PR system. As a result,
increasing the decimation rate of the PFU will result in
performance degradation of the PFU-FAPA as reported in [4].

Another difficulty with the family of FAPA (including PFU-
FAPA) is the fact that only a transformed version of the adaptive
filter is adapted. As a result, for direct real-time system
identification with FAPA, one has to obtain the adaptive filter

through extra computations. This same difficulty exists for zero-
delay adaptive filters, where the time-domain filter is obtained
through a transformation of the subband adaptive filters. The
recently proposed Pseudo Affine Projection (PAP) algorithm
[7,8,9], removes the above limitations by offering a
computational complexity comparable to FAPA, while providing
access to the adaptive filter without transformation.

In this paper, we employ the Gauss-Seidel PAP (GS-PAP)
algorithm proposed in [8,9] since it can be better tailored to low-
resource implementation compared to the PAP in [7]. We first
apply a simplification to GS-PAP followed by a partial filter
update scheme. The resulting algorithm is termed: Sequential
GS-PAP (SGS-PAP). It is shown that unlike partial update
FAPA, SGS-PAP does not suffer from the aliasing problem as
the partial update decimation rate increases.
The proposed SGS-PAP is implemented and evaluated on a low-
resource OS-SAF platform with complex subband signals.
Section 2 summarizes the complex GS-PAP algorithm and
Section 3 describes a proposed modification to the algorithm.
The proposed SGS-PAP is introduced in Section 4, and system
evaluations and conclusions are discussed in Sections 5 and 6,
respectively.

2. COMPLEX GAUSS-SEIDEL PSEUDO-APA

We first establish the notation:
N : affine order, L : adaptive filter length

nx : reference signal, ns : primary signal

n
H

1nnn xhse −−= : error signal,

21,, δδδ : regularization parameters

nx : [ ]T1Ln1nn x,,x,x +−− �
1L ×

nX : [ ]1Nn1nn x,,x,x +−− � NL ×

nα : [ ]T1Nn1nn x,,x,x +−− �
1N ×

nR : n
H
n XX autocorrelation matrix NN ×

ns : [ ]T
1Ln1nn s,,s,s +−− �

1N ×

nP : first column of [ ] 1
n

H
n

−
δ+XX 1N ×

nh : adaptive filter taps 1L ×

1nU − : top 1N − elements of 1nU − 1)1N( ×−

The complex affine projection algorithm (APA) [2] of order
N (without regularization) adapts the filter according to

[ ] ( )**
1n

T
nn

1
n

H
nn1nn hshh −

−
− −µ+= XXXX . (1)

The Pseudo Affine Projection (PAP) as originally proposed
in [7] solves the matrix inversion in (1) with a linear prediction
while the Gauss-Seidel PAP (GS-PAP) [8,9] employs the Gauss-
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Seidel method to do the same. The GS-PAP algorithm is
summarized here.

1. Initialization: [ ] 0U,0h,01P, 11

TT
1111 ==δ=δ= −−−− IR

2. Autocorrelation matrix update:
T

Ln
*

Ln
T
n

*
n1nn −−− αα−αα+= RR

3. Update matrix inversion estimate through one GS

iteration: [ ]TT
nn 01P =R .

4. Calculate or Update nU :

nn
0,n

n P
P

1
U X= or n

T
n

0,n
n

1n

n
n P

P

1
u,

U

u
U α=�

�

�
�
�

�
≈

−

5. Calculate output error: n
H

1nnn xhse −−=

6. Update adaptive filter: *
n

2n
H
n

n
1nn e

Ux

U
hh

δ+
µ+= −

3. MODIFICATION TO GS-PAP

Rather than using nU , one can define nnn PV X= to arrive at

the following update equation
*
nn1nn eVhh µ+= − . (2)

In fact when the nP estimate is exact and there is no

regularization, step 6 of GS-PAP above and Eq. (2) are
equivalent. To prove this, notice how the terms in step 6 may be
simplified:

nn

nn
H
n

nn

n
H
n

n P
Px

P

Ux

U
X

X

X
==

The denominator is identically one since n
H
nx X is the first row

of the matrix n
H
nn XXR = while nP is the first column of its

inverse. Thus Eq. (2) can replace Step 6 of GS-PAP.
Furthermore, to gain the same computation advantage offered

by GS-PAP, nV can be approximated in a manner similar to

nU . Thus Step 4 of GS-PAP is replaced as follows:

4. Calculate or Update nnn PV X= or

�
�

�
�
�

�
≈α=

−1n

n
nn

T
nn V

v
V,Pv (3)

where 1nV − is a vector containing the top 1N − elements of

1nV − . When the reference signal is stationary, the approximation

offered by Eq. (3) is appropriate. nP is slowly changing since it

estimates the first column of the inverse of the autocorrelation
matrix. Similar to the one offered in Step 4 of GS-PAP, the
approximation degrades as the reference signal becomes less
stationary.

The advantage of the modified GS-PAP (using the
approximation in Step 4 for both) is a complexity reduction by 2
Multiply and Accumulations (MAC’s), and 2 divisions per
sample. While this saving may seem insignificant, it can add up
quickly in an oversampled subband adaptive filter design.

We have experimentally verified that the proposed
modifications do not alter the convergence and steady-state
properties of the GS-PAP. As a result, in all evaluations, the
modified version of the GS-PAP (Eq.’s (2) and 3) ) is employed.
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Figure 1: Polyphase adaptive filter representation using a delay
chain. For sequential update, ignore the thin dashed lines.

4. SEQUENTIAL GS-PAP

A polyphase analysis of the sequential LMS (S-LMS) and partial
update FAPA has already been provided in [5] and [6],
respectively. It was shown in [5] that the block diagram in Fig. 1
could express the sequential update LMS using a sequential
decimation factor of 2 .

Note that in Fig. 1 )z(H0 and )z(H1 are the polyphase

components of the adaptive filter. In order to obtain the
sequential update scheme, only one of the polyphase
components is updated at a time using a single decimated
version of the reference signal. This update scheme corresponds
to ignoring the thin dashed lines in Fig. 1.

Through careful consideration of Fig. 1, the Sequential
Gauss-Seidel Pseudo Affine Projection (SGS-PAP) algorithm
will be derived. Let D be the sequential decimation factor,
assumed to evenly divide L . Also define

[ ]TDLnDnnn
x,,x,x +−−=ζ � ( 1DL × )

[ ]T
DDNnDnnn

x,,x,x +−−=ξ � ( 1N × ).

[ ]
DDNnDnnn ,,,

+−−
ζζζ=Ζ � ( NDL × ).

It can be seen in Fig. 1 that only a decimated version of the
reference signal is used to adapt the adaptive filter, thus it makes
sense to use the autocorrelation matrix of the decimated signal
instead of the autocorrelation matrix of the complete reference

signal. Thus nR becomes [ ]IR δ+ΖΖ= n
H
nn instead of its typical

form [ ]IXXR δ+= n
H
nn . Note that in order to ensure that the

matrix n
H
n ΖΖ is non-singular, the affine order and sequential

decimation rate must be set satisfying the inequality DLN ≤ .
Assuming this and expanding on the update pattern suggested by
Fig. 1, one can write out the SGS-PAP algorithm step-by-step as:

1. Initialization:

[ ] 0V,0U,0h,01P, DD1

TT
1D1D ===δ=δ= −−−−− IR

2. If 0Dmodn ≠ then skip to 6.
3. Update autocorrelation matrix:

T

Ln

*

Ln

T

n

*

nDnn −−− ξξ−ξξ+= RR

4. Update inversion estimate

Put [ ]TT
nn 01P =R through one GS iteration.

5. Calculate or Update
n

U or
n

V :
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�

�
�
�

�
≈ξ=

−Dn

n
nn

T

n
0,n

n U

u
U,P

P

1
u or

nnn PV Ζ= or �
�

�
�
�

�
≈ξ=
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6. Calculate output error: n
H

1nnn xhse −−=

7. Update one polyphase component ( k,nh
~

) of the adaptive

filter:

*
n

2
Hk,1nk,n e

U

U
h
~

h
~

δ+ζ
µ+= −

��

� or *
nk,1nk,n eVh

~
h
~

�
µ+= −

D
D

n
�
�

�
�
�

�=� , { }1D,,1,0k −∈ � , �−= nk

[ ]TDLk,nDk,nk,nk,n h,,h,hh
~

−++= �

Note that when switching from the GS-PAP algorithm to the
SGS-PAP algorithm, the nU or nV vector reduces from a size

of 1L× to 1DL × . Using the modifications proposed in Section
3 and the approximation in the Step 5, the complexity of an
optimal implementation of the SGS-PSP algorithm is

D)N3NL(2L 2 ++++ MAC’s and D1 divisions.

4.1 Online Regularization

Online regularization based on the scheme presented in [10] was
employed for the SGS-PAP with slight modifications to consider
the effect of decimation in the sequential update. The scheme
detailed in (4) determines the regularization parameter, nδ ,
smoothed with a first-order attack-release IIR filter. In (4), R is
the filterbank decimation rate (see Section 5), D is the
sequential update decimation rate, and sF is the sampling

frequency. Estimates of the reference and primary signal powers
( 2

n,xσ and 2
n,sσ respectively) are also obtained using a first-order

attack-release IIR filter. The reference signal power estimate is
shown as an example.

{ }2
n,s

2
n,xn L,)1N(DLmax σ⋅σ⋅−⋅=∆

( )�
�
	

δ<∆δα+∆α−
δ≥∆∆

=δ
−−δδ

−

DnnDnn

Dnnn
n if1

if 1
S

DR

F
1

−

δ 


�

�

�

�

⋅
−=α

(4)
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�
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σ<σα+α−

σ≥
=σ

−−σσ

−
2

1n,x
2

n
2

1n,x
2

n

2
1n,x

2
n

2
n2

n,x
xifx1

xifx 1L1 −
σ −=α

Note that the attack-release IIR filters both have instant
attacks to ensure stability of the adaptive algorithm. The IIR
filters for the signal power estimates each have a release time-
constant set to the filter tap-length (determined by σα in (4))

because it is approximately the last L samples of the reference
signal that influence adaptation and the estimate of the
autocorrelation matrix.

The regularization parameter’s attack-release IIR filter has a
release time-constant of one second as specified by δα in (4).

While this choice is not critical, it must be long enough to ensure
that the regularization parameter does not drop too quickly,
especially during the short pauses between words when the
reference signal or near-end disturbance consists of speech.

5. SYSTEM EVALUATION

For system evaluation, an oversampled GDFT filterbank with a
Weighted Overlap-Add (WOLA) implementation (detailed in
[1,5]) was used with the following parameters: The analysis and
synthesis window lengths were 128 and 64 samples,
respectively. The number of complex bands was 16K = ; the
filterbank decimation rate (input frame shift) was 4R = ; and the
stacking of the GDFT filterbank was odd.

For the first test case, white noise was used as the reference
signal. The primary signal consisted solely of the echo with no
near-end disturbance. In order to generate the echo, the eighth
plant of the ITU-T G. 168 standard, [11], was used. The echo
signal was then normalized to have an echo return loss (ERL) of
10 dB. Each of the complex subband adaptive filters had a tap-
length of 32L = samples, an affine order of 4N = and used a
step-size of 1=µ with online regularization of Section 4.1. Fig.
2-A depicts the echo return loss enhancement (ERLE) for the
APA and the GS-FAP, GS-PAP and modified GS-PAP
algorithms. As expected, the affine projection algorithm
outperforms all other algorithms. However, ERLE curves of the
GS-FAP, GS-PAP and modified GS-PAP algorithms are
indistinguishable. This result is not surprising as the key
approximation in deriving the GS-FAP [3] is also present in the
GS-PAP [8,9]. The approximation allows for reducing the matrix
inversion in Eq. (1) to solving a set of N linear equations as

[ ]TT
nn 01P =R in Step 3 of GS-PAP

5.1 Sequential GS-PAP Evaluations

The SGS-PAP algorithm (using the last option in Step 5 of SGS-
PAP which is the simplest) was also evaluated through
simulation. The first test case it went through was similar to the
test case described above using white noise as the reference
signal. The only difference between this test and the one
described above is that a fixed regularization parameter was
used, and the step-size was no longer fixed to one. Instead, for
different decimation rates of 8,1,2,4D = , the step-size was set to
be dependent on the decimation rate as 1,5.0,25.0,125.0=µ ,

respectively. The regularization parameter was set to 1110=δ
considering the worst-case scenario from Eq. (4),

{ }2
n,x)1N(DLmax σ⋅−⋅ assuming stationary noise as the subband

reference signal with a power of around 910 . Fig. 2-B depicts
the resulting ERLE curves. One can note from the figure that due
to the step-size scaling, the different ERLE curves are
indistinguishable. Identical behaviour is reported in [5] for the
S-LMS algorithm.

Figs. 2-C,D depict the ERLE results for tests similar to Fig.
2-B but using the on-line regularization of Eq. (4). When the on-
line regularization is used, the step-size µ should be fixed to

unity for various D values since nδ in (4) is inversely
proportional to the sequential decimation rate. This compensates
for the slower convergence of increased sequential decimation
rates as confirmed by Figs. 2-C and 2-D.

The second test case used the same set-up as Fig. 2-C (on-
line regularization and 1=µ ) but with different signals. Here the
reference signal consisted of a recorded male voice with additive
white noise at SNR of 30 dB. The primary signal consisted of the
echo and a near-end disturbance. The echo was generated using
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Figure 2: ERLE of white excitation with no near end disturbance
for A) APA, GS-FAP, GS-PAP, B) SGS-PAP with fixed

regularization and decimation dependent step-size, C) SGS-PAP
with 1=µ and on-line regularization, D) Details of Curve C in

the second half of time.
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Figure 3: Reference, Primary and Output speech signals with the
ERLE results using SGS-PAP with 4D = .

the same plant as before but was normalized for an ERL of 15
dB. The near-end disturbance was a recorded male voice with
white noise added at an SNR of 30 dB. The test employed only
SGS-PAP algorithm with 4D = as it performed very similarly to
the GS-PAP and GS-FAP. Fig. 4 depicts the reference, primary,
and output signal waveforms of the algorithm together with the
ERLE results. In the best case (reference single-talk), the echo
signal power is 15 dB higher than the near-end noise floor. That
is why the ERLE performance is limited to around 15 dB. The
presented speech test together with many other similar tests

show that the adaptation method is robust to near-end
disturbance and double-talk. Listening tests revealed no
distortion in the near-end speech. Repeating the test with

81,2,D = proved that all four decimation factors generate similar
results. Hence the sequential GS-PAP algorithm proves to be
quite suitable when used with speech inputs.

6. CONCLUSIONS

Complex GS-PAP algorithm is further simplified and employed
for subband adaptive filtering on oversampled filterbanks.
Sequential partial update PAP is introduced as a low-resource,
efficient alternative algorithm to the PFU-FAPA. It was shown
that unlike the PFU-FAPA, the SGS-PAP algorithm does not
suffer from the aliasing problem due to decimation in sequential
update. Moreover, with the proposed regularization scheme,
increased decimation in the sequential update does not degrade
the convergence performance. The SGS-PAP method is
rigorously evaluated with speech signals in presence of noise and
double-talk. The performance proved to be robust and consistent
while maintaining a low computation cost.
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