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ABSTRACT

This paper considers set-membership filtering (SMF) when the
error-bound specification is hard to determine. Improper error-
bound specification could cause overbounding or underbounding,
both of which can result in degraded performance for SMF algo-
rithms. This paper introduces a novel variable error bound and
presents a different SMF criterion. It is shown that the recursive
algorithm derived from this new set-membership filtering crite-
rion has less risk of overbounding/underbounding and outperforms
conventional SMF algorithms with one fixed error-bound speci-
fication, particularly when insufficient knowledge is available to
determine the bound. The proposed algorithm is more suitable
to time-variant environments. Frequency-domain equalization for
broadband wireless communications is used as an example to il-
lustrate the proposed criterion and recursive solution. Simulation
results that show convergence performance and tracking of a time-
variant channel are presented.

1. INTRODUCTION

Set-Membership Filtering (SMF) and a class of recursive algo-
rithms have been developed and investigated extensively, see, e.g.,
[1, 2, 3]. With a pre-specified error bound, SMF algorithms seek
a set of filter coefficients that yield bounded filter output errors
[4]. Adaptive SMF algorithms have been employed for a variety
of applications that includes, but not limited to, speech coding [5],
adaptive equalization [6] and mitigation of multiple access inter-
ference in wireless communications [7].

The adaptive SMF algorithms generally have excellent con-
vergence and tracking performance thanks to their feature of op-
timized step size for each update step and data-dependent selec-
tive update. Those properties are derivatives of presumed a priori
knowledge of an error bound. The performance of SMF may de-
pend critically on this error-bound specification. In practice, how-
ever, we are often unable to determine the error bound accurately.
The reason is that there is usualy insufficient knowledge about the
underlying system, or even the “true” error bound may be time-
variant due to the changing environments. In such cases, choosing
one error bound value arbitrarily is unreliable and has the risk of
overbounding (i.e., the error bound is larger than it really is) or
underbounding (i.e., the bound is too small); both of which can
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result in performance degradation. These situations call for alter-
native SMF algorithms with the ability of adjusting the error bound
in accordance with the changes in the system.

This paper presents an approach to adjusting the error bound
and introduces a novel error-bound function, that depends on the
filter weight, with an intention to circumvent the aforementioned
problems. Based on this error-bound function, a new SMF cri-
terion is formulated to determine the filter weight vector. This
SMF criterion is a general one that encompasses the conventional
SMF that has one fixed error-bound specification. Recursive algo-
rithms based on this new SMF criterion can automatically tune and
track the error bound. This proposed approach to bound-tuning is
different from the existing approaches (see e.g.,[8, 9]) in that it
does not require the assumption that the “true” error bound is con-
stant. Thus it is more suitable to changing environments. Adap-
tive frequency-domain equalization (FDE) for broadband wireless
communications is presented as an application example for the
proposed SMF algorithm. It will be shown that the recursive al-
gorithm using this variable error-bound specification offers bet-
ter performance than conventional adaptive SMF algorithms, e.g.,
SM-NLMS [4], in terms of convergence and tracking, and is less
likely to overbound or underbound. Furthermore, the proposed
algorithm offers better convergence performance than the conven-
tional adaptive normalized least-mean-square (NLMS) algorithm.

2. SET-MEMBERSHIP FILTERING

Consider a general linear-in-parameter filter with input x, weight
w and output y. Let d be the desired output, and the filtering
error is e(w)=d−wT x. To determine the parameter vector w,
SMF employs a bounded error criterion. With a fixed error-bound
specification γ, conventional SMF algorithms seek to find w such
that

|e(w)|2 ≤ γ2, ∀(x, d) ∈ S (1)

where S is the model space comprising of all input vector-desired
output pairs (x, d). The desired region estimate, termed feasibility
set W , is given by

W =
�

(x,d)∈S

�
w ∈ CN : |d − xT w| ≤ γ

�
. (2)

A recursive solution called SM normalized least-mean-square (SM-
NLMS)[4] is given by

wk = wk−1 + µkekx
∗
k/||xk||2 (3)
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with

µk =

�
1 − γ/|ek| |ek| > γ
0 |ek| ≤ γ.

In essence, at each time instant k, with input xk, training data dk

and the previous parameter estimate wk−1, the SM-NLMS algo-
rithm seeks a new estimate wk so as to minimize ||wk−wk−1||2
with the constraint that |dk−xT

k wk| ≤ γ.
The error-bound specification can be critical to SMF perfor-

mance. Both overbounding and underbouding may impair SMF al-
gorithms. Underbounding could result in a void feasibility set. On
the other hand, overbounding could slow down the convergence
of the adaptive algorithm since the constraint condition on filter
weight is too loose. It could also degrade the steady-state MSE
(mean-squared error) performance and lead to an inconsistent es-
timator.

In many practical problems, however, it is not easy to choose
the error bound adequately. For example, in equalization of com-
munication channels, it is hard to choose equalization error bound.
Another problem is that error-bound specification may need to
change in accordance with the changing characteristics of the chan-
nel. Setting the error bound at an arbitrarily fixed value risks over-
bounding or underbounding, resulting in performance degradation
of adaptive equalization.

3. SMF WITH ERROR-BOUND FUNCTION
SPECIFICATION

To resolve the problem of overbounding or underbounding in SMF,
we propose impose a variable error bound that depends on filter
weights. To begin with, denote the error bound as γ(w) to em-
phasize its dependence on the filter parameter vector w. Its value
is the desired error bound if w is in the desired region, i.e., w is a
feasible solution.

With the specified error-bound function γ(w), the SMF crite-
rion requires that the output error e(w) not be greater than γ(w)
for all input vector-desired output pair (x, d) in the model space
S. Thus the objective is to find w that satisfies

|e(w)| = |d − xT w| ≤ γ(w) ∀(x, d) ∈ S. (4)

Geometrically, for each (x, d), (4) represents a region between two
conicoids. In contrast, (1) represents a region between two hyper-
planes. Using the formulation of (4) makes the adaptive filter more
adept at tracking system variations. The feasibility set W is the set
of parameter vectors that satisfy (4) with the specified error bound
γ(w):

W �
�

(x,d)∈S

�
w ∈ CN : |d − xT w| ≤ γ(w)

�
. (5)

One should note that this criterion encompasses the constant error-
bound specification in the conventional SMF, (1). If there is suf-
ficient information to determine the error bound, γ(w) is just γ,
and criterion (4) becomes (1).

The formulations in (4) and (5) call for a different SMF so-
lution. For those filtering problems with additive input noise as
in adaptive equalization, the filter’s output noise naturally depends
on the filter weight, which is vo=vT

i w where vi is the input noise
vector. γ(w) can be set based on the bound of vo. To derive a
recursive solution based on this SMF criterion, assume that a se-
quence of data pairs (xk, dk)∈S is available for “training.” At

time k, a constraint set Hk is defined as the set of all parameter
vectors that satisfy the specification of (4) for the (xk, dk) pair:

Hk =
�
w ∈ CN : |dk − xT

k w| ≤ γ(w)
�
. (6)

A recursive solution can be derived with a point-wise approach
similar to that of [4]. At time k, given the parameter vector esti-
mate wk−1, and input-desired output (xk, dk), a new estimate wk

is found so as to minimize the Euclidean norm of the change in
the estimate given by ||wk−wk−1||, subject to the constraint that
wk ∈ Hk.

Note that during the adaption process, for each parameter es-
timate, a parameter-dependent error bound specification is used
to judge whether the previous parameter estimate should be re-
tained or a new estimate is needed. In essence, error-bound spec-
ification is changed according to the current parameter estimate,
which, supposedly, reflects timely the system charateristics. So
the problem of determining error bound with insufficient informa-
tion (or not knowing how the parameter will vary) as described in
the previous section can be circumvented. Thus this parameter-
dependent error-bound specification can result in a more reliable
adaptive algorithm than what can be achieved with a fixed error-
bound specification. Note that the recursive algorithm still enjoys
the data-dependent selective update featured by conventional SMF
algorithms.

4. A DESIGN EXAMPLE

Rapid growth in wireless communications results in more demand
on the network to provide high-bandwidth, low-cost and reliable
mobile wireless services comparable to wireline communications.
A fundamental challenge is to mitigate inter-symbol interference
(ISI) with low computational complexity. Single carrier frequency
domain equalization (SC-FDE) has gained a good deal of inter-
est recently because of its ability of mitigating effectively the ISI
with low complexity. It has been considered as one of the options
for fixed broadband wireless communications in IEEE 802.16. As
stated previously, adaptive equalization is an application example
where error bound is hard to determine. In this section, SC-FDE
is presented as an application example of the proposed SMF crite-
rion.

Consider a general adaptive FDE [10] with M bins for broad-
band wireless communications. The symbols are transmitted block-
wise with a cyclic prefix in each transmitted block. At the receiver,
each received block rk is transformed into the frequency domain
Rk through Fast Fourier Transform (FFT) after the cyclic prefix is
removed, and Rk can be described as:

Rk = HDk + Vk (7)

where H is a diagonal matrix whose elements are the FFT of the
impulse response of the frequency-selective fading channel be-
tween the transmitter and the receiver, Dk is the FFT of the k-th
block of transmitted symbols and Vk is the FFT of k-th block of
additive Gaussian noise. Since FFT is a linear operation, the trans-
form domain noise Vk remains to be Gaussian. Assume that its
variance is σ2

n. Then equalization can be done bin-by-bin in the
transform domain with an operation for each bin:

Yk,m = WmRk,m = WmHmDk,m + WmVk,m (8)

where Wm is the equalizer weight for the mth bin, m = 0, 1, ..., M−
1. Each bin is an adaptive filtering subsystem. To simplify the dis-
cussion, we focus hereafter on one bin and drop the bin index m in
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all variables, for the results are equivalently applicable to all bins.
At the kth block, denote the filter input by Rk and the de-

sired output by Dk. The filter parameter estimate at time k−1 is
Wk−1. The approach here is to employ the SMF criterion pro-
posed in Section III and the point-wise approach [4] to derive an
adaptive solution for Wk. First, the error bound γ(W ) needs to
be determined. If the equalizer parameter is W , the noise term
in equalizer output is WVk, which is a Gaussian random variable
with zero mean and variance |W |2σ2

n. The error bound can be
approximated by γ(W )=

�
α|W |2σ2

n with α > 1. The recursive
solution is found as follows:

1. If
|Ek|2 � |Dk − RkWk−1|2 ≤ α|Wk−1|2σ2

n,

then Wk=Wk−1 and no parameter update is needed.

2. Else, Wk is found by

min |Wk − Wk−1|2 (9)

subject to: |Dk − RkWk|2 ≤ α|Wk|2σ2
n. (10)

Define βk � |Rk|2 − ασ2
n. Depending on the value of βk, con-

straint (10) may lead to different solutions for Wk. The adaptive
algorithm for FDE is summarized as follows:

If
|Ek| ≤

�
α|Wk−1|2σ2

n (11)

then
Wk = Wk−1,

else

λk =
√

ασn|Dk| (12)

βk = |Rk|2 − ασ2
n (13)

ξk = DkR∗
k − βkWk−1 (14)

Wk =

���������
��������

1
2

�
Wk−1 − W ∗

k−1
ξk
ξ∗

k
+ ξk

|Rk|2
�

if βk = 0

Wk−1 +
�
1 − λk

|ξk|
�

ξk
|βk|
if βk > 0

Wk−1 +
�
1 − |ξk|

λk

�
λkξk

|βk|.|ξk|
if βk < 0.

(15)

If the noise is nonGaussian, one can employ the Central Limit The-
orem (CLT) [11] to approximate the noise distribution in the trans-
form domain with a Gaussian distribution and employ the recur-
sive algorithm (11)∼(15). The parameter-dependent error bound
specification and the variable step size make the adaptive algo-
rithm less vulnerable to overbounding and underbounding, thus
providing better convergence and tracking performance.

5. SIMULATIONS

Simulation results are given here to examine the proposed crite-
rion and the performance of the associated recursive algorithm. In
all simulation examples presented here, FDE with a 64-point FFT
is considered. The channel model used in the simulation is a mi-
crowave radio channel obtained from actual field measurements
[12]. A QPSK (Quadrature Phase-Shift Keying) signaling is as-
sumed. The value of α in defining γ(W ) =

�
α|W |2σ2

n is set
to be 5. The results of the proposed algorithm are compared with

those of the SM-NLMS algorithm which uses a fixed error bound
[4].

Example 1: Convergence performance with Gaussian noise.
In this simulation, the input noise is additive white Gaussian noise
with zero mean and variance 0.1. The variance of noise in the
frequency domain is σ2

n = 6.4. The convergence performance
of the proposed algorithm is compared to SM-NLMS with differ-
ent error bounds, and the results are shown in Fig.1. It is seen
clearly that arbitrarily choosing the error bound with insufficient
information could cause overbounding or underbounding. Simu-
lation results also show that the proposed algorithm enjoys sparse
data-dependent updates and the update frequency is significantly
less than that of SM-NLMS. In this example, only 4% updates
are needed for the proposed algorithm. For SM-NLMS, the up-
dates needed are 46%, 32%, 13%, 3.2% and 2.5% for the bounds
of 0.1σ2

n, 0.5σ2
n, σ2

n, 3σ2
n and 5σ2

n, respectively. We also com-
pare the performance between the proposed algorithm and NLMS
algorithm, shown in Fig.2. The results show taht the proposed al-
gorithm exhibits a faster convergence and lower steady-state error
than NLMS algorithm.

Example 2: Equalization with time-variant channel. The
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Fig. 1. Convergence performance with Gaussian noise: proposed
algorithm vs SM-NLMS with different error bounds.
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Fig. 2. Convergence performance with Gaussian noise: proposed
algorithm vs NLMS algorithm

channel model used in previous simulation is used here as the ini-
tial state of the channel, and then the coefficients vary randomly.
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The time variations in the coefficients are introduced by having
random Gaussian jumps every 200 blocks as shown in Fig.3. The
curves shown in Fig.4 are learning curves of the proposed algo-
rithm, comparing to SM-NLMS with various error bounds. It is
obvious that the proposed algorithm can track the channel with
good performance, while arbitrarily choosing error bound can not
ensure satisfactory equalization performance. SM-NLMS algo-
rithm with γ2 = σ2

n can provide similar performance to the pro-
posed algorithm in some intervals, but inferior performance in
other intervals. The reason is that the “true” error bound is time-
variant due to changing channel.
Other experiments have been performed to compare the perfor-
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Fig. 3. Time variations of channel
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Fig. 4. Tracking of time-variant channel: the proposed algorithm
(solid line) vs SM-NLMS with different error bounds (dotted lines
with markers)

mance of the proposed algorithm to SM-NLMS with nonGaussian
noise. The details are omitted here due to space limitation. Once
again, the proposed algorithm offers more robust and better per-
formance than SM-NLMS algorithm does.

6. CONCLUSION

This paper has investigated the set-membership filtering when in-
sufficient information is available to determine accurately the error
bound. A variable error bound is introduced to address its depen-
dence on the filter weight and an alternative SMF algorithm is pro-

posed. The proposed criterion and the resulting algorithm employ
a parameter-dependent error-bound specification such that the er-
ror bound is specified in accordance with the parameter estimate,
thereby reducing the risk of overbounding/underbounding. The
proposed algorithm is applied to SC-FDE as an example. Simu-
lation results show that the proposed algorithm outperforms both
NLMS algorithm and SM-NLMS algorithm especially when the
required error bound information is not available or inaccurate.

7. REFERENCES

[1] E. Wei and H. Piet-Lahanier, “Estimation of parameter
bounds from bounded-error data: a survey,” Mathematics
and Computers in Simulation, vol. 32, no. 5-6, pp. 449–268,
Dec. 1990.

[2] P. S. Diniz and S. Werner, “Set-Membership Binormalized
Data Re-using LMS Algorithms,” IEEE Trans. Signal Pro-
cessing, vol. 51, no. 1, pp. 124–134, Jan 2003.

[3] J. R. Deller, Jr., M. Nayeri, and M. S. Liu, “Unifying
the Landmark Developments of Optimal Bounding Ellipsoid
Identification,” Int. J. Adaptive Control and Signal Process-
ing, vol. 8, pp. 48–63, Jan-Feb 1994.

[4] S. Gollamudi, S. Nagaraj, S. Kapoor, and Y. F. Huang, “Set-
Membership Filtering and a Set-Membership Normalized
LMS Algorithm with an Adaptive Step Size,” IEEE Signal
Processing Lett., vol. 5, no. 5, pp. 111–114, May 1998.

[5] D. Joachim and J. R. Deller, Jr., “Short signal classification
using set-membership identification: Application to speech
labeling,” in Proc. 43rd Midwest Symp. Circuits and Systems,
East Lansing, Aug. 2000.

[6] S. Gollamudi, S. Kapoor, S. Nagaraj, and Y. F. Huang, “Set-
Membership Adaptive Equalization and an Updator-Shared
Implementation for Multiple Channel Communication Sys-
tems,” IEEE Trans. Signal Processing, vol. 46, no. 9, pp.
2372–2385, September 1998.

[7] S. Gollamudi and Y. F. Huang, “Iterative nonlinear mmse
multiuser detection,” in Proc. ICASSP1999, March 15-19,
1999, vol. 5, pp. 2595–2598.

[8] D. Maksarov and J. P. Norton, “Tuning of Noise Bounds
in Parameter Set Estimation,” in Proceedings of Interna-
tional Conference on Identification in Engineering Systems,
Swansea, UK, 27-29 March 1996, pp. 584–593.

[9] T. M. Lin, M. Nayeriand, and J. R. Deller, Jr., “Consistently
Convergent OBE Algorithm with Automatic Selection of Er-
ror Bounds,” International Journal of Adaptive Control and
Signal Processing, vol. 12, pp. 302–324, June 1998.

[10] M. V. Clark, “Adaptive Frequency-Domain Equalization and
Diversity Combining for Broadband Wireless Communica-
tions,” IEEE J. Select. Areas Commun., vol. 16, no. 8, pp.
1385–1395, October 1998.

[11] H. Stark and John W. Woods, Probability, Random Pro-
cesses, and Estimation Theory for Engineers, PRENTICE
HALL, Upper Saddle River, NJ, 1994.

[12] Microwave channel database, Rice University,
http://spib.rice.edu/spib/microwave.html.

IV - 372

➡ ➠


