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ABSTRACT

Canonical Correlation Analysis (CCA) is a classical tool in sta-

tistical analysis that measures the linear relationship between two

data sets. In this paper we show that CCA can be reformulated as

a pair of coupled least squares (LS) problems. By exploiting this

idea, we first present an iterative batch procedure to extract all the

canonical vectors through a regression procedure. Then, we de-

rive a Recursive Least Squares (RLS) algorithm for on-line CCA.

This algorithm can be further improved to increase its robustness

against outliers and impulsive noise. The proposed algorithm is

applied to blind identification of multichannel FIR systems, and

its performance is illustrated through simulations.

1. INTRODUCTION

Canonical Correlation Analysis (CCA) is a well-known technique

in multivariate statistical analysis, which has been widely used in

economics, meteorology, and in many modern information pro-

cessing fields, such as communication theory, statistical signal pro-

cessing, and Blind Source Separation (BSS).

CCA was developed by H. Hotelling [1] as a way of measuring

the linear relationship between two multidimensional sets of vari-

ables. Typically, CCA is formulated as a generalized eigenvalue

(GEV) problem; however, a direct application of eigendecomposi-

tion techniques is often unsuitable for high dimensional data sets

as well as for adaptive environments due to their high computa-

tional cost. Although several batch algorithms for the extraction

of canonical variates and canonical correlations have been recently

presented [2–4], the generalization of these algorithms to real-time

signal processing applications has been only suggested [4]. In

this paper we exploit the reformulation of CCA as a pair of cou-

pled least squares regression problems to develop a new iterative

batch CCA algorithm. Moreover, this batch technique can be eas-

ily extended to adaptive CCA by applying a recursive least squares

(RLS) algorithm. The proposed on-line algorithm can be viewed

as a particular case of a fixed-point method for GEV problems

presented in [5]. However, by looking at CCA as a couple of re-

gression problems some advantages appear: first, we are able to

derive a true RLS algorithm, secondly, the adaptive algorithm can

be used to extract simultaneously all the canonical vectors and, fi-

nally, the availability of a reference signal allows us to derive a

robust version of the algorithm, which is similar to the Recursive

Least M-Estimate algorithm proposed in [6].

This work was supported by MCYT (Ministerio de Ciencia y Tec-
nologı́a) under grants TIC2001-0751-C04-03 and TEC2004-06451-C05-
02.

The proposed adaptive CCA algorithm is applied to the blind

identification of single-input multiple-output (SIMO) time-varying

channels, which is a common problem encountered in communi-

cations, sonar and seismic signal processing.

2. CANONICAL CORRELATION ANALYSIS

Let X1,X2 be two known full-rank data matrices of size N ×m1

and N ×m2, respectively. Canonical Correlation Analysis (CCA)

can be defined as the problem of finding two vectors: w1 of size

m1 ×1 and w2 of size m2 ×1, such that the variates y1 = X1w1

and y2 = X2w2 are maximally correlated, i.e.,

argmax
w1,w2

ρ =
yT

1 y2

‖y1‖‖y2‖ =
wT

1 R12w2√
wT

1 R11w1wT
2 R22w2

, (1)

where Rij = XT
i Xj is an estimate of the correlation matrix.

Problem (1) can be formulated as the following constrained op-

timization problem

argmax
w1,w2

wT
1 R12w2 (2)

subject to wT
1 R11w1 = wT

2 R22w2 = 1.

The solution of (2) is given by the eigenvector corresponding to the

largest eigenvalue of the following generalized eigenvalue problem

(GEV) [3] [
0 R12

R21 0

]
v = ρ

[
R11 0
0 R22

]
v, (3)

where ρ is the maximum correlation between the two sets of vari-

ables and v = [wT
1 ,wT

2 ]T is the eigenvector. Alternatively, the

solution can be obtained as the eigenvector corresponding to the

largest eigenvalue of the matrix C

C =

[
R11 0
0 R22

]−1 [
0 R12

R21 0

]
.

The remaining eigenvectors, vi = [wT
1,i,w

T
2,i]

T , and eigen-

values, ρi, of C are the subsequent canonical vectors and corre-

lations respectively. The corresponding canonical variates y1,i =
X1w1,i and y2,i = X2w2,i are maximally correlated and orthog-

onal for different pairs of canonical vectors, that is, for i �= j

yT
1,iy1,j = wT

1,iR11w1,j = 0,

yT
2,iy2,j = wT

2,iR22w2,j = 0, (4)

yT
1,iy2,j = wT

1,iR12w2,j = 0.
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Many linear algebra techniques exist in the literature to solve this

problem, however, besides their high computationally cost, they

are not well suited for adaptive processing.

3. CCA THROUGH ITERATIVE REGRESSION

3.1. Extraction of the main eigenvector

In this paper we propose a new iterative technique for solving

the CCA problem. To develop the method, let us start by not-

ing that R−1
11 R12 = X+

1 X2 and R−1
22 R21 = X+

2 X1, where

X+
j = (XT

j Xj)
−1XT

j is the pseudoinverse of Xj . Therefore,

the GEV problem (3) can be viewed as two coupled LS regression

problems

ρw1 = X+
1 X2w2 = X+

1 y2, (5)

ρw2 = X+
2 X1w1 = X+

2 y1. (6)

The basic idea of the batch algorithm is to solve both regres-

sion problems iteratively: at each iteration we form a LS regres-

sion problem using as desired output a linear combination of the

canonical variates obtained in the previous iteration. Specifically,

at the kth iteration we construct the reference signals ỹ1(k) =
(1 − α)y1(k − 1) + αy2(k − 1), and ỹ2(k) = (1 − α)y2(k −
1) + αy1(k − 1) where 0 ≤ α ≤ 1. For instance, for α = 0.5 the

desired output for the regression problem is the mean of the previ-

ous output estimates. Now, the canonical vectors are obtained by

solving the following pair of LS problems

argmin
β(k),w1(k)

J1(k) = ‖ỹ2(k) − β(k)X1w1(k)‖2
2 , (7)

argmin
β(k),w2(k)

J2(k) = ‖ỹ1(k) − β(k)X2w2(k)‖2
2 , (8)

where β(k) = α+(1−α)ρ(k), and whose solutions are given by

β(k)w1(k) = X+
1 ỹ2(k), (9)

β(k)w2(k) = X+
2 ỹ1(k). (10)

By grouping the canonical vectors into the eigenvector v(k) =
[wT

1 (k),wT
2 (k)]T , and substituting the reference signals ỹ1(k)

and ỹ2(k) into (9) and (10), we arrive to the following equation,

which describes the convergence of the algorithm

β(k)v(k) = [αI + (1 − α)C]v(k − 1). (11)

In this way, after each iteration we obtain a scaled version of the

main eigenvector β(k)v(k). Taking into account that β(k) = α+
(1−α)ρ(k), the correlation coefficient at iteration k can be readily

estimated.

Although derived in different way, this technique is equiva-

lent to the well-known power method to extract the main eigen-

vector and eigenvalue of matrix C. However, as we will show

later, this LS regression framework can be modified in a straight-

forward manner to derive an adaptive CCA algorithm, which can

be of interest in applications where the statistics change over time.

3.2. Extraction of the remaining eigenvectors

To extract the remaining canonical vectors we will resort to a de-

flation technique [7]. Specifically, the regression problems (5) and

(6) can be generalized as

ρiw1,i = X+
1 X2w2,i = X+

1 y2,i, i = 1, 2, . . . , p

ρiw2,i = X+
2 X1w1,i = X+

2 y1,i, i = 1, 2, . . . , p

where p = min(m1, m2). This leads to the following iterative

equations

βi(k)w1,i(k) = X+
1 ỹ2,i(k),

βi(k)w2,i(k) = X+
2 ỹ1,i(k).

where βi(k) = α + (1 − α)ρi(k) and ỹ1,i(k) and ỹ2,i(k) are

the new reference signals, which must be constrained to fulfill the

orthogonality conditions (4). Specifically, ỹ1,i(k) and ỹ2,i(k) are

now constructed as

ỹ1,i(k) = (1 − α)P1,i(k)y1,i(k − 1) + αy2,i(k − 1),

ỹ2,i(k) = (1 − α)P2,i(k)y2,i(k − 1) + αy1,i(k − 1),

where Pj,i(k) (j = 1, 2) denotes the projection matrix onto the

subspace orthogonal to the previously extracted canonical variates

Yj,i(k) = [yj,1(k), . . .yj,i−1(k)]

Pj,i(k) = I − Yj,i(k)
(
YT

j,i(k)Yj,i(k)
)−1

YT
j,i(k).

4. ON-LINE RLS ALGORITHM

4.1. Extraction of the main eigenvector

The iterative regression framework introduced in the previous sec-

tion is applied here to derive an adaptive CCA technique. To ob-

tain an on-line algorithm, the LS regression problems (7) and (8)

are now rewritten as the following cost functions

argmin
β(n),w1(n)

J1(n) =
n∑

l=1

λn−l
(
ỹ2(l) − β(n)xT

1 (l)w1(n)
)2

,

argmin
β(n),w2(n)

J2(n) =
n∑

l=1

λn−l
(
ỹ1(l) − β(n)xT

2 (l)w2(n)
)2

,

where ỹj(n) are the reference signals, and 0 < λ ≤ 1 is the

forgetting factor. For notational convenience, and without loss of

generality, we will use α = 0, i.e. ỹj(n) = xT
j (n)wj(n − 1)

and β(n) = ρ(n), then, a direct application of the RLS algorithm

yields, for j = 1, 2

ρ(n)wj(n) = ρ(n − 1)wj(n − 1) + kxj (n)ẽj(n), (12)

where

ẽ1(n) = ỹ2(n) − ρ(n − 1)xT
1 (n)w1(n − 1), (13)

ẽ2(n) = ỹ1(n) − ρ(n − 1)xT
2 (n)w2(n − 1), (14)

are the a priori errors, and the Kalman gain vector kxj (n) of the

process xj is updated with the well-known equations

kxj (n) =
Pxj (n − 1)xj(n)

λ + xT
j (n)Pxj (n − 1)xj(n)

,

Pxj (n) = λ−1
(
I − kxj (n)xT

j (n)
)
Pxj (n − 1),
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Initialize Px1 , Px2 , Py1,i
, Py2,i

, ρi and ui for i = 1, 2, . . . , p.
for n = 1, 2, . . . do

Obtain xj(n) and update kxj
and Pxj

for j = 1, 2.
for i = 1, 2, . . . , p do

Update kyj,i
and Pyj,i

with yj,i(n) for j = 1, 2.
Apply (15) to update ρi and ui with ‖ui‖ = 1.
Update y1,i(n) and y2,i(n).

end for
end for

Algorithm 1: Summary of the proposed adaptive CCA Algorithm.

where Pxj (n) = Φ−1
xj

(n) is the inverse of the autocorrelation

matrix Φxj (n) =
∑n

l=1 λn−lxj(l)x
T
j (l).

Although derived in a different way, this procedure is equiva-

lent to the fixed-point algorithm for generalized eigendecomposi-

tion (GED) proposed in [5]. However, it is interesting to point out

that our method is a true RLS algorithm, which uses a reference

signal specifically constructed for CCA. This reference signal can

be used, for instance, to develop a robust version of the algorithm

as we will describe later.

4.2. Extraction of the remaining eigenvectors

The generalization of Eq. (12) for multiple pairs of canonical vec-

tors is, for j = 1, 2

ρi(n)wj,i(n) = ρi(n − 1)wj,i(n − 1) + kxj (n)ẽj,i(n),

where the a priori errors are defined again as (13) and (14), but

now the reference signals are obtained by means of a deflation

technique, which resembles the APEX algorithm [7]

ỹj,i(n) = xT
j (n)wj,i(n − 1) − yT

j,i(n)ρi(n − 1)cj,i(n − 1),

where yj,i(n) = [yj,1(n), . . . , yj,i−1(n)]T contains the canonical

variates, i.e., yj,i(n) = xT
j (n)wj,i(n), and ρi(n − 1)cj,i(n − 1)

imposes the orthogonality conditions (4).

Similarly to principal component analysis (PCA) [7], there are

many techniques to update the coefficients ρi(n−1)cj,i(n), in this

work we propose the following RLS-based update procedure

ρi(n)cj,i(n) = ρi(n − 1)cj,i(n − 1) + kyj,i(n)ỹj,i(n),

where ỹj,i(n) can be seen as the a priori error of the new RLS

problem. Finally, we can write the overall algorithm (see Algo-

rithm 1) in matrix form as

ρi(n)ui(n) = ρi(n − 1)ui(n − 1)+

+ Ki(n)Γi(n − 1)ZT
i (n)ui(n − 1), (15)

where ui(n) = [wT
1,i(n),wT

2,i(n), cT
1,i(n), cT

2,i(n)]T , and

Ki(n) =

⎡
⎢⎢⎣
kx1(n) 0 0 0

0 kx2(n) 0 0
0 0 ky1,i(n) 0
0 0 0 ky2,i(n)

⎤
⎥⎥⎦ ,

Γi(n) =

⎡
⎢⎣
−ρi(n) 1 0 −ρi(n)

1 −ρi(n) −ρi(n) 0
1 0 −ρi(n) 0
0 1 0 −ρi(n)

⎤
⎥⎦ ,

Zi(n) =

⎡
⎢⎣
x1(n) 0 0 0

0 x2(n) 0 0
0 0 y1,i(n) 0
0 0 0 y2,i(n)

⎤
⎥⎦ .
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Fig. 1. Convergence of the eigenvectors and eigenvalues.

4.3. On-line algorithm robust to outliers

An advantage of the proposed LS framework is that it allows the

development of CCA algorithms robust to outliers. In particular,

we propose to apply the RLS algorithm only if the error between

the estimated canonical variates

ei(n) = xT
1 (n)w1,i(n − 1) − xT

2 (n)w2,i(n − 1),

is under an adaptive threshold ξi(n). In this way, this procedure

is equivalent to the recently proposed Recursive Least M-Estimate

algorithm [6], where the classical LS cost function is replaced by

the modified Huber M-Estimate function. The adaptive selection

of the threshold is based on the median filter proposed in [6]

ξi(n) = kξiσi(n),

where kξi is a parameter that controls the outlier suppression level

and σi(n) is estimated as

σ2
i (n) = λσiσ

2
i (n − 1) + (1 − λσi)c1med(Aei(n)),

where Aei(n) = [e2
i (n), . . . , e2

i (n−Nw + 1)] denotes a window

of errors of length Nw, and c1 = 1.483(1 + 5/(Nw − 1)).

5. SIMULATION RESULTS

Three examples are shown in this section to illustrate the perfor-

mance of the proposed method. In all the simulations we show

the averaged results of 300 independent simulations. Finally, the

initialization parameters for the three examples are

• Px1 ,Px2 ,Py1,i and Py2,i , for i = 1, . . . , p, are initial-

ized as 105I, where I is the identity matrix.

• w1,i and w2,i, for i = 1, . . . , p, are initialized as random

vectors.

• c1,i, c2,i, ρi and σi, for i = 1, . . . , p, are initialized to zero.

5.1. Algorithm convergence

In the first example we consider a stationary environment with-

out outliers. We simulate two data sets of dimensions m1 = 30
and m2 = 20 for which the first four canonical correlations are

ρ1 = 0.9, ρ2 = 0.8, ρ3 = 0.7 and ρ4 = 0.6. The application

of the RLS-based algorithm with forgetting factor λ = 0.99 gives

the results shown in Fig. 1, where we can see that both the esti-

mated canonical vectors and the estimated canonical correlations,

converge very fast to the theoretical values.
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Fig. 2. Tracking properties of the RLS-CCA algorithm.

5.2. Tracking properties

The second example considers a blind SIMO channel estimation

problem [8], but in a time-varying environment. The channels

change linearly their coefficients in order to evaluate the track-

ing behavior of the algorithm. The initial channels are h1(0) =
[1, 0, 0, 0, 0, 0] and h2(0) = [0, 0, 0, 0, 0, 1], whereas the chan-

nels after 300 samples are h1(300) = [1, 0.6,−0.3, 0, 0.4, 0.8]
and h2(300) = [0.7,−0.9, 0.7, 0.5, 0.2, 1]. Both channels are

driven by a common white Gaussian signal, and their outputs are

corrupted by white Gaussian noise to get a final SNR = 20dB.

Our goal is to obtain the main canonical vectors between the out-

puts of both channels: this is an alternative estimation technique

to that proposed in [8]. Figure 2 shows the evolution of the true

and estimated canonical vectors weights using a forgetting factor

of λ = 0.9.

5.3. Performance in the presence of outliers

In the final example we consider again a SIMO channel estimation

problem but corrupted now by impulsive noise. The channels are

h1 = [0.8,−0.4, 0.6,−0.8, 1,−0.8, 0.6,−0.4, 0.8],

h2 = [0.7, 0.2,−0.3, 0.5,−1, 0.5,−0.3, 0.2, 0.7],

and the signal to noise ratio is SNR = 30dB. In addition to the

additive white Gaussian noise, some outliers are added at some

specific samples. In particular, outliers modeled as Gaussian noise

with standard deviation σ = 10 are added at samples 4200 and

7500 for channel 1 and at samples 5500 and 6100 for channel 2.

Additionally, the channel response h2 abruptly changes to −h2 at

sample 8000. The forgetting factor is λ = 0.95, the median fil-

ter window length is Nw = 20, and three different values of kξi

have been used. The results are shown in Fig. 3, where we can

see the trade-off between the convergence rate and the outlier sup-

pression level. From Fig. 3 we also conclude that the selection of

an appropriate value of kξi plays a determinant role in the perfor-

mance of the algorithm in the presence of outliers. For instance,

the algorithm with kξi = 2.576 outperforms the algorithms with

kξi = ∞ (no outlier suppression) and kξi = 1 (very low threshold

thus meaning a higher false alarm probability and correspondingly

a slower convergence).
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Fig. 3. Performance in presence of outliers.

6. CONCLUSIONS

In this paper we have developed a new RLS algorithm for adap-

tive CCA, which is based on the reformulation of CCA as a pair of

coupled LS regression problems. By changing the LS cost func-

tion by a Huber M-Estimate function, the proposed algorithm of-

fers an increased robustness against outliers and impulsive noise.

The performance of the proposed algorithm has been demonstrated

through simulations in time-varying blind SIMO channel identifi-

cation problems. Further investigation lines include the extension

of the proposed method to kernel CCA (KCCA), and the general-

ization to multiple data sets.
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