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ABSTRACT

The recently introduced cost-reference particle filter (CRPF)
methodology allows for recursive estimation of unobserved states
of dynamical systems without a priori knowledge of probability
distributions of the noises in the system. In this paper, we use
CRPFs in problems where we eliminate one more strong assump-
tion about the state space model, the one of knowing the function
governing the state evolution. We replace this function by a lin-
early combined set of basis functions where the linear combination
coefficients are unknown. We show how CRPFs can be modified
to cope with this scenario and demonstrate their performance for
positioning a moving vehicle in a two-dimensional space.

1. INTRODUCTION

Particle filtering has lately become a powerful tool for online track-
ing of signals and time-varying parameters of dynamic systems
[1, 2]. These methods require a mathematical representation of the
dynamics of the system evolution, together with assumptions of
probabilistic models.

In this paper, we continue the study of the class of particle
filtering methods introduced in [3]. The main feature of these
filters is that they are not based on any particular probabilistic
assumptions and that the statistical reference is substituted by a
user-defined cost function which measures the quality of the state
signal estimates according to the available observations. Hence,
methods within this class are termed cost-reference particle filters
(CRPFs), as opposed to conventional statistical-reference particle
filters (SRPFs).

Although the filters proposed in [3] drop all probabilistic as-
sumptions regarding the system model, they still require knowl-
edge of the model deterministic structure, i.e., the state transition
function, and/or the observation function. We introduce the no-
tion of unstructured CRPFs (UCRPFs), which drop both the usual
probabilistic assumptions in particle filtering (as CRPFs in [3] do)
and, partially or completely, the deterministic structural assump-
tions regarding the knowledge of the functions in the model. In
this paper we investigate the adaptive estimation of approxima-
tions of the state transition function.

The fundamentals of the CRPF and UCRPF approaches are
introduced in Section 2 and Section 3, respectively. In Section 4,
we apply the proposed algorithms to the problem of positioning
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a mobile in a two-dimensional space. Finally, brief concluding
remarks are made in Section 5.

2. COST REFERENCE PARTICLE FILTERS

2.1. Problem statement

Many problems in signal processing can be stated in terms of the
estimation of a hidden random signal in a dynamic system of the
form
Xt = fa(Xe—1) +ue
ye = fy(xt) +ve,

state equation D
observation equation 2)

where t = 1,2, ... denotes discrete time; x; is an L, X 1 vector
that represents the system state; f, : REs — I, C RY= is the
(possibly nonlinear) state transition function; u; € R is a state
perturbation at time ¢; y; is an L, X 1 observation vector; fy, :
RY= — I, C R%v is a (possibly nonlinear) transformation of the
state; and v; € R™v is an observation noise vector at time t.

Equation (1) describes the dynamics of the system state vector
and, hence, it is usually termed state equation or system equation,
whereas equation (2) is commonly referred to as observation equa-
tion or measurement equation. It is convenient to distinguish the
structure of the dynamic system, which is due to the functions f;
and f,, from the associated probabilistic model, which depends
on the probability distribution of the noise signals and the a priori
distribution of the state, i.e., the statistics of xg.

The ultimate aim is the online estimation of the sequence of
system states, Xo.¢, using the available observations, y1.¢.

2.2. Sequential Algorithm

In order to estimate xo.+ from y1.; without knowledge of any prob-
ability density function (pdf), we substitute the statistical reference
of the a posteriori state pdf, p(xo:¢|y1:¢), by a user-defined cost
function that measures the quality of the state signal estimates ac-
cording to the available observations. In particular, we use a real
cost function of the form

C(xo:t|y1:t, A) = AC(x0:t—1|y1:t—1) + AC(x¢|ye)

where the recursive structure allows to update the cost of a se-
quence up to time ¢ — 1 by looking solely at the state and obser-
vation vectors at time ¢, x; and y:, respectively, which are used
to compute the incremental cost, AC(x¢|y:). The parameter A,
where 0 < A < 1, is a forgetting factor that avoids attributing an
excessive weight to old observations when a long series of data are
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collected, hence allowing for potential adaptivity. We also con-
sider a one-step risk function, R(x:—1|y+), that measures the ad-
equacy of the state at time ¢ — 1 given the new observation, y;.
It is convenient to view the risk function as a prediction of the
incremental cost which can be obtained before x; is actually prop-
agated. Hence, a natural choice of the risk function is

R(xi-1lyt) = AC (fa(xe-1)lye) -

The proposed estimation technique proceeds sequentially in a
manner similar to a standard particle filter [1, Chapter 1]. Par-
ticles are initialized uniformly on a set, Xo C RE=, where the
initial state is known to lie, while zero initial costs are assigned.
Given a set of M state trajectories and associated costs up to time

t, {ngi,c,ﬁ”} , where € = C(x{)|y1.1, A) and x{) are the
i=1
i-th cost and particle stream, respectively, the grid of state trajec-

tories is randomly propagated when y: is observed by taking the
following steps:

1. Selection of the most promising trajectories (resampling).

Fori=1,2,..., M, let

R = 2+ R lyen)

7%521 X /"’(Riil)
where ¢ : R — [0, 4+00) is a monotonically decreasing
function and 7441 : {1,..., M} — [0,1) is a probability

mass function (pmf). A new particle filter is obtained by
resampling the trajectories {xézz5 M according to the pmf

) Ny M
#")| and we denote it as {5:5;1, Ct(z)} .
i=1

2. Random propagation. For¢ = 1, ..., M, let

X~ pe (x[x(Y)

Cy = A+ AC(x lye) = A + act,

where p:41 is a probability density function (pdf) chosen

by the designer which must satisfy Ele(x‘&y))xt_~_1 =

fa (5{5”) (i.e., zero-mean noise is assumed).

3. Estimation of the state. Let wt(jzl o u(Ct(j_)l) fori =
1,..., M. The pmf 7, ; allows to calculate state estimates
at time ¢ + 1 in several ways, e.g.,

M
mean __ (2) _(2)
Xt+1 = Z Xip1 g1
i=1

The general procedure described above is referred to as the
Cost-Reference Particle Filter (CRPF). It is apparent that many
implementations are possible for a single problem. Some more
detailed design guidelines are proposed in [3], as well as suffi-
cient conditions for asymptotic convergence (as M — c0) of the
method.

3. UNSTRUCTURED CRPF

The CRPFs introduced in [3], and briefly reviewed in Section 2,
drop the usual statistical assumptions common to standard particle
filters, namely:

o the knowledge of the a priori pdf of the state signal, p(xo),
e the knowledge of the noise densities, p(u¢) and p(v¢), and

o the ability to evaluate the likelihood, p(y:|x¢), and sample
from the state transition pdf, p(x¢|x¢—1).

However, CRPFs still require knowledge of the deterministic struc-
ture of model (1)-(2), given by the functions f, and f,. In order to
relax these structural assumptions, it is necessary to carry out a re-
cursive estimation of the functions f, and/or f; within the CRPF.
In this paper, we focus on the problem of estimating f,, while
still assuming f, is known. Hence, we do not constrain the dy-
namics of the system state, x;, but we still assume basic physical
knowledge of the signals we acquire in order to perform the esti-
mation task, e.g., radar pulses or communication waveforms.

3.1. Estimation of [,

A simple way to represent the state transition function, is by linear
combination of a set of basis functions. Let us denote such a set as

B:{Lpll,...,(,01J74P21,...,QOQJ,...QOLxl,...

where ¢;; : REfs - R, i=1,...,L, j=1,...,J. Using
B, we aim at building an estimate of the form

 PLad }s

.
Sy ers(xe)a $,,2
fa(xe) = = :
-
> L. (x)aL, #y.43L
— diag {@ZA}
where ., = [pi1(x¢)s .-+, SOiJ(Xt)]T and a; = [a1s,. .. ,aji]T
are J x 1 vectors, ¢ = [p ..., JisaJ X L, matrix

which results from the application of the basis functions on x
and A = [a;,...,ar,]isaJ X L, matrix of linear combination
coefficients. A straightforward criterion for the selection of the
coefficients in A is the Least Squares (LS) method, which can be
written as

¢ 2
a;; = arg main {Z (ml;k - £l—'_—k71a) } 3)

k=1

.
forl =1,..., Ly and x¢ = [T13t, ..., T L5t

3.2. Outline of the UCRPF algorithm

The LS estimator (3) can be adaptively computed using the Re-
cursive Least Squares (RLS) algorithm [4]. The RLS algorithm
and the CRPF can be intertwined, in a way similar to the combi-
nation of the Kalman filter and conventional SRPFs that yields the
Mixture Kalman Filter (MKF) [5], to obtain the new Unstructured
CRPF (UCRPF). In the UCRPF, an RLS algorithm is run for each
particle and each state dimension in order to obtain an associated
estimate of the state transition function. By proceeding in this way,
the particle risks and, as a consequence, the selection step of the
algorithm, become dependent on the corresponding function esti-
mates.

Unlike the former CRPF, the UCRPF consists of four elements
that are recursively updated,

M

) ) Y Ly i
Qt={x&’,c,ﬁ’,{Qiff}l:l,Ai’,} :

i=1
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where Ql(; (Z k=1 90;1;1991( 11 ) , vector cp( results from the
application of the basis functions ¢y1, . . .
attime k, x,(g”, and AV = [ag, . a<L) ;] is the linear combiner

computed via the RLS algorithm using the state sequence xgi and

the observations y1:¢.
Attime t + 1, the estimate of f (
i-th particle risk is obtained as

2 i . NG
() = diag {807 AP},

, QLT on the i-th particle

X§i>) required to compute the

where <I>Ei) [goi’i, RN <p<L’) } After selection and propagation
of the state, AEZ and Qz (notice the use of " to indicate that
particles have been resampled) can be updated to obtain a§’2 11

and Qz t118s

. Qe

gl = — QT @

T A@, (D)

1+ Ql;tfl ¢

() _ A (4) (4) )T A1)
allt+1 = al;lt + 8ttt (ml;t+1 - fz(;t) al?t) (5)
_ (1) © i

Ql 4l = — 8 t+1‘Pl(t> Qz ©)

The UCRPF algorithm is summarized on the next page, in Table
1. There a Gaussian density with adaptive variance is used for
propagation of the particles [3].

4. COMPUTER SIMULATIONS

In this section we present computer simulations that illustrate the
validity of our approach. We considered the problem of autonomous
positioning of a vehicle moving along a two-dimensional space.
The vehicle has means to estimate the power of three radio signals
emitted from known locations and with known attenuation coeffi-
cients. This problem can be modeled by the state-space dynamic
system

fo(xe—1) + ue @)

P;. .
101og;q (th%) +wvje 3=1,2,3 (8)

T

Xt =
Yise =

where x; = [z1,4,%2¢]" € R? indicates the vehicle position; its
dynamics are given by the state transition function

1.2\3:”,1 ‘% + 1,6|ZE2¢71 ‘%
9

fa(xe) = { lo,e| (2|$2,t|% + vaztﬁ)

T2 ¢

and u is the state noise process modeled as a random 2 X 1 vector
with a mixture Gaussian distribution

u; ~ 0.85M(0,0.3515)+0.14N (0, 7I2)+0.1A(0, 25I5), (10)

where I represents the identity matrix of size 2 x 2. The vector
Vi = [Y1,¢, Y28, yg,t]T collects the received power from the three
emitters located at r; € R? j = 1,2,3, which transmit their
signals with known initial power, P; o, through a fading channel
with attenuation coefficient 5, and, finally, w; is the observation
noise modeled as a white mixture Gaussian process given by

0.85\/(0, 0.65) + 0.14A(0, 4) 4 0.1N/(0, 25)
j=1,23. (11)

Wit~

10
Bootstrap
s “ }"Nl CRPF
= 8% — - UCRPF
3 ;1 W
| i
g \ ‘M’V'W%\‘u
2 i A
E 4 | "M‘w‘rw’\
% | ‘lﬂl\
S | Il
é 2 j:]lywpMﬂx”h“ﬂwﬂ(‘;')\\\w“l
0
0 200 400 600 800

t

Fig. 1. Average absolute-deviation error attained by the CRPF,
UCRPF and SPF algorithms.
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Fig. 2. (a) Estimate of fz (first dimension). (b) Estimate of fz
(second dimension).

We applied the proposed CRPF and UCRPF algorithms in or-
der to adaptively estimate the vehicle trajectory, xo.¢, given the
collected observations, y1::. The CRPF, as described in subsec-
tion 2.2, is specified by

Xo = (-10,+10)
cxy = o0 vie{1,.,M}
AC(xily:) = |lye—h(x:) |?
(xelyer1) = |l yerr —h(Aixi)) [P
ucel) = -

(Ct@) — ming {Ct(k>} + 6)5

where 6 = 0.1 and 8 = 2. We also chose a forgetting factor
A = 0.99. The considered form of p was proposed and studied
in [3]. As for the propagation density (p:+1 in Section 2.2), we
considered a two-dimensional Gaussian pdf with i.i.d. components
and adaptively chosen variance, as shown in Table 1, where the ~
in 0, 2() indicates that particles have undergone resampling. The
initial variance is 0§ = 10. For the simulations presented below,
the number of particles was fixed to M = 200.

The specification of the UCRPF is the same as for the CRPF,
except that it needs to be completed by a set of basis functions
B = By U B2, where

J J
B1 = {@1j(xt)=\$1;t|"}_ )
=

iNJ
144
To 1T T
Ba {9023'(Xt) = 7‘ 2t }
T2;t .

IV -363



INITIALIZATION: Fori=1,... M;l=1,..., Ly
x(()l) ~ Z/{(XO);C(()1> =0 0(2),(1) — 08; Ql“()) =0.11,; A(()” =0sxL,

RECURSIVE UPDATE: UCRPF at time ¢ is Q; — {xf’, ct“",{ g;‘g}jjl LAY }M .
Fori=1,...M
Compute {<pl.7(xgi)) 121, then build {(p(l) = [4,0“( >), ce gou(xii))] T} and i’ii) = [ggli, . ,g(gi;t .
Estimate the dynamics as f, (x\"”) = diag {@E” Al

. ~ : q
Compute the risk as REH = )\C(l) + HYt-H = fy(fa( XEZ) H

Build the selection pmf as 7rt(+>1 o< M(REL) where ,u R — [07 is monotonically decreasing function.

Build the intermediate set {2, = {f{t 7Ct(l)7 { (2) Ai , } by resampling §2; according to the pmf {ﬁiﬁl}fil

Fori=1,... M
Propagate the i-th particle XEQI ~ N (x|fe (fcii)), &f’(i)> .
Compute the increment ACEQI = AC(xﬁ)l\yHl) and update the cost as Ct(i)l = AC}w + ACt(i)
; O 112
2 _ t;l ;2.0 [ (’”‘§ ol

’( ) — 52
o

Propagation variance update: if ¢ > 10 then oy} else o,

For [ =1,...,L;: update the RLS algorithm (gt_g17 al t+17 Ql t+1) accordlng to equations (4)- (6)

STATE ESTIMATION: 7, oc u(C))), xinspm = oM x () 7).

Table 1. Unstructured CRPF algorithm

and J = 8.

We simulated the evolution of the dynamic system (7)-(8) dur-
ing one hour with a time step of 5 s (i.e., 720 discrete-time units)
and compared the performance of the CRPF, UCRPF and a stan-
dard particle filter (SPF) (see, e.g., [1, Chapter 1]) with the same
number of particles.

Figure 1 shows the average absolute-deviation error attained
by the CRPF, UCRPF and BF when estimating the vehicle trajec-
tory. The expression of the error, which was estimated from 50
independent simulation trials, is

50
1 | N
€t = ———=~ T1;t;5 — T1st;5
2 x 50 Z R !
j=

+ |T25t55 — T2t 5

where x;,4,; is the vehicle position on the ¢-th dimension, at dis-
crete time ¢, in the j-th simulation run, and Z;;;;; is the corre-
sponding estimate obtained from one of the three particle filtering
algorithms. This plot shows that the performance of the proposed
CRPF and UCRPF is worse than, but close to, that of the SPF.
Note that the SPF is perfectly matched to the noise statistics given
by (10) and (11) and requires perfect knowledge of the function
f=. Both the CRPF and the UCRPF are implemented without any
a priori known probabilistic model for the noise processes, and the
latter needs to estimate f, online, together with the state trajectory.

Finally, Figures 2(a) and 2(b) show the function estimates, fx
computed by the UCRPF in a single simulation trial.

5. CONCLUSIONS

We have introduced a class of particle filters, called unstructured
cost reference particle filters, which can track evolving unknowns

of a dynamic system without the explicit knowledge of the noise
probability distribution functions in the system and the function
that models the evolution of the system state. The unknown func-
tion modeling the state trajectory is replaced by a set of linearly
combined basis functions. The additional unknowns are the com-
bining linear coefficients which become elements of the filter parti-
cles. The new filters have been successfully applied to the problem
of positioning a moving vehicle along a two-dimensional plane.
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