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ABSTRACT

A novel offline-optimized adaptive filtering (OOAF) algo-
rithm is proposed which allows the coupled estimation of
waveform and frequency of a single-tone sinusoid in addi-
tive Gaussian noise. In a specified range of frequencies,
the coefficients of a FIR filter are computed to minimize a
given noise power. At a particular frequency in the range,
quadratic polynomials are used to compute the impulse re-
sponse and its derivative with respect to frequency. The
waveform and its frequency are then determined by an adap-
tive algorithm that uses the offline-optimized filter. In AWGN,
the frequency estimate is shown to be unbiased and has an
approximate asymptotic variance derived analytically. Sim-
ulation and analytical results show that OOAF exhibits ex-
cellent performance in tracking the sinusoidal waveform and
estimation of its frequency especially in colored noise.

1. INTRODUCTION

Estimation of sinusoidal signals and their frequencies from
noisy measurements is important in many fields such as an-
gle of arrival estimation, frequency-shift keying (FSK) de-
modulation and Doppler estimation of radar waveforms [1].
The observed signal has the following general form

x(k) = a cos(kθ + φ) + q(k),

where a is the amplitude, φ is the phase of the signal and
q(k) is a zero mean Gaussian noise process with variance
equal to σ2

q . The problem is to estimate the frequency θ and
the waveform of the sinusoid, x̂(k), from the noisy obser-
vations of x(k). Frequency estimation can be achieved by
means of either parametric or nonparametric methods [1].
Many approaches, such as the maximum likelihood estima-
tion and notch filtering techniques [2] exist for the estima-
tion of frequency. Recently, adaptive algorithms have re-
ceived much attention because of their high performance in
waveform tracking and noise suppression [3]. In this pa-
per, an adaptive algorithm is introduced that uses offline-
optimized filters to suppress the noise and result in the es-

timation of the waveform and the frequency of the sinu-
soid. The main novelty in this work is the use of an offline-
optimized filter which offers much flexibility compared to
the adaptive notch filter [2] in shaping the frequency re-
sponse for improved colored noise rejection. The approach
resembles that of [3] which employs online constraints for
waveform estimation in the frequency domain. It is well
known that the Least Mean Square (LMS) algorithm does
not perform well in cases where the noise is colored. In this
paper, we first design the offline filter to suppress frequency
components outside a specified range. We then present the
structure of the adaptive filter used for tracking the frequency
and the waveform of the input signal. The frequency esti-
mate is shown to be unbiased and the approximate asymp-
totic variance of the proposed OOAF is given in section 4.
Simulation results and conclusions are included in the end.

2. THE OFFLINE OPTIMIZATION OF FIR FILTER

Consider a predictive FIR filter of length N ,

x̂o(k + 1) =
N−1∑
n=0

ho,nxo(k − n). (1)

In order that the filter can predict a sinusoidal signal xo(k) =
a cos(kθ1) at frequency θ1, the following equations must be
satisfied:

N−1∑
n=0

ho,n cos(nθ1) = cos θ1 (2)

N−1∑
n=0

ho,n sin(nθ1) = − sin θ1. (3)

Equations (2) and (3) can be written in matrix form as

Aho = p (4)

where

A =
[
1 cos θ1 cos 2θ1 . . . cos{(N − 1)θ1}
0 sin θ1 sin 2θ1 . . . sin{(N − 1)θ1}

]
,
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p = [cos θ1 − sin θ1]T .

This filter can be optimized by minimizing a suitably chosen
cost function in terms of the noise suppression performance,
subject to the constraints in (4). The frequency response of
the predictive filter in (1) is

Ho(θ) =
N−1∑
n=0

ho,ne−j(n+1)θ. (5)

When the frequency to be estimated is in the lower part of
the frequency range, the magnitude frequency response has
a low-pass character. It will be assumed in the rest of this
paper that θ1 lies in a certain frequency range [θ1min, θ1max].
In order to suppress frequency components outside this range
and design the frequency response of the resulting filter, the
following cost function is defined,

J1 =
M∑

m=1

wm |Ho(θ(m))|2 . (6)

where θ(m), m = 1, . . . ,M is the frequency range rep-
resented by M samples, and wm, m = 1, . . . , M are the
weights that can be used to shape the frequency response.
For equal wm, J1 is approximately the white noise gain
(norm) of the filter. Minimization of J1 subject to the con-
straints in (4), can be achieved by using the method of La-
grange multipliers. Incorporating the constraint equation
(4) in the cost function, we obtain

J2 =
M∑

m=1

wm |Ho(θ(m))|2 + λT (Aho − p). (7)

where λ = [λ1 λ2]T is the vector of Lagrange multipliers.
The minimization of J2 with respect to ho results in the
following equation:

N−1∑
i=0

ho,ici,j=−1
2

(λ1a1,n+1+λ2a2,n+1) n=0, . . . , N−1

(8)
where

ci,j =
M∑

m=1

wm cos[(j − i)θ(m)] i, j = 1, . . . , N.

In (8), ai,n+1, i = 1, 2 are the elements of A and ci,j are
the elements of C. Equation (8) can be written in matrix
form as

Cho = −1
2
AT λ. (9)

The solution of the filter coefficient vector h0 can be ob-
tained from (9) as

ho = C−1AT
(
AC−1AT

)−1
p. (10)

Now, ho can be calculated as a function of θ1 in the range
of frequencies [θ1min, θ1max].

3. THE ADAPTIVE FILTER

Consider an adaptive predictive FIR filter of the form

x̂(k + 1) =
N−1∑
n=0

hn(k)x(k − n) = hT (k)xN (k) (11)

where x̂(k + 1) is the output of the filter.

h(k) = [h0(k) . . . hN−1(k)]T (12)

is the vector of filter coefficients at time step k and

xN (k) = [x(k) . . . x(k − N + 1)]T (13)

is the observed data vector where x(k) = xo(k)+q(k). The
prediction error is defined as

ep(k + 1) = x(k + 1) − x̂(k + 1). (14)

Given an initial coefficient vector h(k) = ho[θ̂1(k)], where
θ̂1(k) is the estimate of the frequency at step k, the problem
is to adjust h so that the filter output matches the original
signal xo. At step k,

x̂(k + 1) = hT (k)xN (k). (15)

Assume also that the filtered prediction error is equal to the
difference between the original signal and the output of the
filter:

ẽp(k + 1) = xo(k + 1) − x̂(k + 1) (16)

h(k + 1) is to be determined such that

xo(k + 1) = hT (k + 1)xN (k). (17)

Equations (15), (16) and (17) can be written as

ẽp(k + 1) = [h(k + 1) − h(k)]T xN (k)
= ∆hT (k)xN (k). (18)

The correction vector ∆h(k) is given by the first order dif-
ference approximation,

∆h(k) ≈ ∂h
∂θ1

∣∣∣∣
θ̂1(k)

∆θ1 = g(k)∆θ̂1. (19)

Substituting (19) in (18)

ẽp(k + 1) = gT (k)xN (k)∆θ̂1 (20)

The correction in the estimated frequency is then,

∆θ̂1 =
ẽp(k + 1)

gT (k)xN (k)
. (21)

The updating scheme for the estimated frequency is

θ̂1(k + 1) = θ̂1(k) + µ
ẽp(k + 1)

gT (k)xN (k)
. (22)
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where µ is a suitably chosen step size. There is a trade-
off between small estimation variance (small µ, see (39))
and increased tracking ability (large µ). The updated filter
coefficient vector and its gradient are

h(k + 1) = ho[θ̂1(k + 1)], (23)

g(k + 1) = go[θ̂1(k + 1)]. (24)

where go is the gradient of ho with respect to the frequency
θ1. It should be noted that the gradient go is efficiently cal-
culated using finite differences from ho in the specified fre-
quency range.

Note that the denominator in (21) can become arbitrar-
ily small since it is a linear combination of noisy sinusoids
with time-varying coefficients. In such a case, the correc-
tion in the frequency cannot be solved from (21). Higher
order terms may be required in the series expansion in (19)
for the solution of ∆θ1. However, in such a case, ẽp will
become nonlinear in ∆θ1. This is avoided by equating the
correction ∆θ1 to zero in such a singular case, where µ is
set to zero whenever∣∣gT (k)xN (k)

∣∣ < ε. (25)

Here, ε is a threshold for successive updates. When ε is
too small, it may lead to instability and on the other hand,
a large value of ε may result in decreased tracking perfor-
mance. In the implementation of this scheme, polynomials
of the appropriate degree are used to approximate accurately
the coefficient vector h and its gradient g with respect to θ1.
Quadratic approximating polynomials are used to write

ho2(θ1) = a + bθ1 + cθ2
1

g2(θ1) = α + βθ1 + γθ2
1 (26)

where a,b, c, α, β, γ ∈ R
N are vectors computed to min-

imize the mean squared error between ho (or g) and the
polynomial ho2 (or g2).

4. BIAS OF THE FREQUENCY ESTIMATE

The discrete-time equation for the estimated frequency θ̂1

is a nonlinear stochastic equation. An approximate small-
signal stability analysis can be performed around the fre-
quency θ1 of the original sinusoid xo. In order to simplify
the analysis, it will be assumed that there is no filtering on
the prediction error. A perturbation of the estimated fre-
quency can be defined as

δθ̂1(k) = θ̂1 − θ1. (27)

With this definition and the above assumption, the following
discrete-time equation can be written

δθ̂1(k + 1) = δθ̂1(k + 1) + µ
ep(k + 1)

gT (k)xN (k)
. (28)

Now, the prediction error in (28), using (14) is

ep(k + 1) = x0(k + 1) + q(k + 1) − x̂(k + 1). (29)

Expanding the filter coefficient vector around θ1,

h(k) = ho[θ̂1(k)] = ho[θ1 + δθ̂1(k)]

≈ ho(θ1) + g(θ1)δθ̂1(k) (30)

the predicted signal in (29) can then be written as

x̂(k + 1) =hT (k)xN (k)

≈hT
o (θ1)xN (k) + gT (θ1)xN (k)δθ̂1(k). (31)

Based on the measured signal model x(k) = xo(k) + q(k),
the data vector in (31) can be written as

xN (k) = xo,N (k) + Q(k) (32)

where

Q(k) = [q(k) q(k − 1) . . . q(k − N + 1)]T . (33)

This leads to

hT
o (θ1)xN (k) = hT

o (θ1)xo,N (k) + hT
o (θ1)Q(k)

= xo(k + 1) + q̃(k + 1). (34)

In (34), q̃(k + 1) is a noise component with variance equal
to that of q(k + 1) multiplied by the noise gain of the filter
ho(θ1) given by Gn = ‖ho‖2. From (31), (34) and (29),

ep(k+1)=q(k+1)− q̃(k+1)−gT (θ1)xN (k)δθ̂1(k) (35)

is obtained. Substituting (35) in (28) and with the approxi-
mation g(k) ≈ g(θ1), (28) becomes

δθ̂1(k+1) = (1−µ)δθ̂1(k)+µ
q(k + 1) − q̃(k + 1)

gT (θ1)xN (k)
. (36)

Taking the expectation of (36) and neglecting the random
component of gT (θ1)xN (k),

E
{

δθ̂1(k + 1)
}

= (1 − µ)E
{

δθ̂1(k)
}

. (37)

If 0 < µ < 2 then

lim
k→∞

E
{

δθ̂1(k)
}

= 0, (38)

which shows that the estimated frequency is unbiased. Us-
ing (36), it is also possible to obtain an approximate expres-
sion for the asymptotic variance of the frequency estimate
v(k) given by,

lim
k→∞

v(k) ≈ 2µ2σ2
q (1 + Gn)

εAθ1(1 − αP )

√
1 − ε2

A2
. (39)

where Gn = ‖ho(θ1)‖2, α = (1− µ)2, P = π/θ1 and A is
the amplitude of gT (θ1)xN .
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Fig. 1. Variance of the estimated frequency versus the signal fre-
quency θ1 in colored noise. µ = 0.01, ε = 5, σ2

q = 0.16.

5. COMPUTER SIMULATIONS

The offline filter is designed in the frequency range [π/45,
π/15]. The offline optimized filter coefficient vector ho and
its gradient go are computed. The adaptive filter of length
N = 20 is applied to the observed noisy signal x(k) to
obtain its prediction x̂(k + 1) with an error of ep(k + 1).
It should be noted that it is possible to vary N depend-
ing on the requirements set by some applications. Increas-
ing N leads to better noise suppression performance but it
also increases complexity. In Fig. 1 a performance com-
parison is made in correlated Gaussian noise, obtained by
first band-pass filtering AWGN. There is an approximately
15-fold decrease in variance relative to the Adaptive Notch
Filter (ANF) over the same range of frequencies [2]. Fig-
ure 2 shows waveform estimation performance of OOAF in
colored noise where the eigenvalue spread (ES) is 11. The
variance is shown where the frequency estimate converges
from an initial value of 0.087 rad. to the original signal fre-
quency of 0.1397 rad. The performance is compared with
DCT-LMS which reduces ES and enables LMS to converge
to the input waveform. The stepsize µ of OOAF is adjusted
to have the same tracking speed as the DCT-LMS. It is ob-
served that the ensemble-averaged mse associated with the
proposed OOAF is consistently smaller than that of DCT-
LMS in the steady state. The computational complexity of
ANF is lower than the proposed OOAF algorithm which
has a complexity comparable to the conventional LMS al-
gorithm for waveform estimation. The number of multi-
plications required for OOAF is approximately 8N and the
number of additions is 5N where N is the filter length. For
waveform estimation in colored noise, DCT-LMS requires
much higher computational complexity in order to evaluate
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Fig. 2. The waveform estimation performance in colored noise.
θ1 = π/18, µ = 0.25, ε = 8, σ2

q = 0.025, ES=11.

the DCT transform coefficients at each iteration.

6. CONCLUSIONS

A novel approach to the estimation of a single-tone sinu-
soid and its frequency is presented. The frequency estimate
is shown to be unbiased and an approximate analytical ex-
pression has been derived for its asymptotic variance. The
method results in rapid convergence to the true frequency
and consistently tracks the sinusoidal waveform. In corre-
lated Gaussian noise, over the chosen range, the method is
superior to ANF in estimating frequency. Waveform estima-
tion is also shown to have a higher performance compared
to DCT-LMS with a much lower computational complexity.
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