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ABSTRACT

The paper provides an analysis of steady-state and transient
behavior of two filtered-x affine projection algorithms suit-
able for multichannel active noise control. The analysis re-
lies on energy conservation arguments, it does not apply the
independence theory nor it imposes any restriction to the
signal distributions. The paper also shows that filtered-x
affine projection algorithms always provide a biased esti-
mate of the minimum-mean-square solution of active noise
control problem.

1. INTRODUCTION

The affine projection (AP) algorithms are a family of adap-
tive filters that can produce a good tradeoff between con-
vergence speed and computational complexity. Their prop-
erties have been exploited for many years in the field of
acoustic echo cancellation and recently it was recognized
that the filtered-x AP algorithms can be very helpful also
in the field of active noise control (ANC) both for single-
channel and multi-channel solutions [1]. Despite the great
interest for these algorithms, very few publications deal with
the convergence properties of AP and filtered-x algorithms.
Early convergence analysis results for AP and filtered-x al-
gorithms were mostly based on the independence theory
(IT) and constrained the probability distribution of the input
signal to be Gaussian or spherically invariant [2]. The IT as-
sumes the statistical independence of time-lagged input data
vectors. While the IT works well for LMS and NLMS algo-
rithm analysis, this hypothesis is too strong for filtered-x [3]
and AP algorithms [4, 5]. Different approaches have been
studied in order to overcome the IT. [3] presents an analysis
of the mean weight behavior of the filtered-x LMS algo-
rithm based only on the hypothesis of neglecting the corre-
lation between coefficient and signal vectors. Moreover, the
analysis of [3] does not impose any restriction on the sig-
nal distributions. Another analysis approach that avoids IT
is applied in [4] for the mean-square performance analysis
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of AP algorithms. In [4] the convergence treatment relies
on energy conservation arguments and no restriction is im-
posed on the signal distributions. Also part of the analysis
of [4] is based on the hypothesis of neglecting the correla-
tion between coefficient vectors and some signal functions.
Furthermore, simple expressions are derived for the mean-
square-error (MSE) and the mean-square-deviation (MSD)
of the family of AP algorithms and conditions on the step-
size for the mean-square stability are obtained.

In this paper we apply and adapt the approach of [4]
to the steady-state and transient analysis of multichannel
filtered-x AP algorithms suitable for active noise control.
In particular we consider and compare the exact filtered-x
AP algorithm [1] and a novel approximate algorithm. We
also show in the paper that filtered-x AP algorithms always
provide a biased estimate of the minimum-mean-square so-
lution of the active noise control problem. Nevertheless, in
many cases the bias is small and therefore the filtered-x AP
algorithms can be profitably applied to active noise control.

The paper is organized as follows. Section 2 reviews
the multichannel feedforward active noise controller struc-
ture and the multichannel filtered-x AP algorithm. Section 3
compares the minimum-mean-square solution of the ANC
problem with the asymptotic solution of filtered-x AP algo-
rithms. Section 4 presents the analysis of the steady-state
and transient behavior of filtered-x AP algorithms. Sec-
tion 5 provides some comparisons between theoretically pre-
dicted values and simulation results. Conclusion follows in
Section 6.

Throughout the paper small boldface letters are used to
denote vectors and bold capital letters are used to denote
matrices, e.g. x and X, all vectors are column vectors,
the boldface symbol I indicates an identity matrix of ap-
propriate dimensions, the symbol � denotes the linear con-
volution, diag{. . .} is a block-diagonal matrix of the entries
{. . .}, E[ · ] denotes the mathematical expectation, ‖ · ‖Σ

is the weighted Euclidean norm, e.g. ‖w‖Σ = wT Σw
with Σ a symmetric positive definite matrix, vec{·} indi-
cates the vector operator and vec−1{·} the inverse vector
operator that returns a square matrix from an input vector of
appropriate dimensions, ⊗ denotes the Kronecker product.

IV - 3450-7803-8874-7/05/$20.00 ©2005 IEEE ICASSP 2005

➠ ➡



d

e(n)
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Fig. 1. Delay-compensated filtered-x structure for active
noise control.

2. MULTICHANNEL FILTERED-X AFFINE
PROJECTION ALGORITHMS

Multichannel active noise controllers are based on the de-
structive interference in given locations of the noise pro-
duced by some primary sources and the interfering signal
generated by some secondary sources. Fig. 1 shows the
block diagram of a multichannel delay-compensatedfiltered-
x active noise control system. As usual, the primary and
secondary paths, which propagate the primary and secondary
source signals, respectively, are modelled with linear FIR
filters. In order to compensate for the propagation delay in-
troduced by the secondary paths, the output of the primary
paths d(n) is estimated by subtracting the output of the sec-
ondary paths model from the error sensors signals e(n). In
this paper we assume perfect modelling of the secondary
paths, i.e. d̂(n) = d(n). In the adaptive filter any input i is
connected to any output j with a linear filter.

The following notation is used throughout the paper:
I is the number of primary source signals,
J is the number of secondary source signals,
K is the number of error sensors,
L is the affine projection order,
sk,j(n) is the impulse response of the secondary path that
connects the j-th secondary source to the k-th error sensor,
wj,i(n) is the coefficient vector of the FIR filter that con-
nects the input i to the output j of the adaptive controller,
xi(n) is the i-th primary source input signal vector,

x(n) =
[
xT

1 (n), . . . ,xT
I (n)

]T
,

wj(n) =
[
wT

j,1(n), . . . ,wT
j,I(n)]T ,

yj(n) = wT
j (n)x(n) is the j-th secondary source signal,

dk(n) is the output of the k-th primary path,
w(n) =

[
wT

1 (n), . . . ,wT
J (n)]T ,

M is the total number of coefficients of w(n),
uk(n) =

[
sk,1(n) � xT (n), . . . , sk,J(n) � xT (n)]T ,

dk(n) =
[
dk(n), . . . , dk(n − L + 1)

]T
,

d(n) =
[
dT

1 (n), . . . ,dT
K(n)

]T
,

Uk(n) =
[
uk(n), . . . ,uk(n − L + 1)

]
,

U(n) =
[
U1(n), . . . ,UK(n)

]
,

e(n) = d(n) + UT (n)w(n).
With this notation the adaptation rule of the filtered-x

AP algorithm [1] can be written as in equation (1),

w(n + 1) = w(n) − µU(n)V−1(n)e(n), (1)

where the KL × KL matrix V(n) is given in equation (2),

V(n) = UT (n)U(n) + δI, (2)

with δ a small positive regularization term. We consider
also a novel approximate algorithm obtained by estimating
V(n) with the expression of equation (3),

V(n) = diag
{
UT

1 (n)U1(n)+δI, . . . ,UT
K(n)UK(n)+δI

}
.

(3)
This equation provides a less computationally intensive up-
dating rule since the interactions among the error signals are
not considered.

By substituting the expression of e(n) in equation (1),
we obtain the expression of equation (4) that will be used
for the algorithms analysis,

w(n+1) =
(
I−µP(n)

)
w(n)−µU(n)V−1(n)d(n), (4)

with P(n) = U(n)V−1(n)UT (n).

3. MINIMUM-MEAN-SQUARE SOLUTION AND
ASYMPTOTIC SOLUTION

The minimum-mean-square solution, wo, of the active noise
control problem is given by equation (5),

wo = −R−1
uuRud, (5)

where Ruu = E
[∑K

k=1 uk(n)uT
k (n)

]
and Rud =

E
[ ∑K

k=1 uk(n)dk(n)
]
. On the contrary, from equation (4)

it can be easily deduced that the multichannel AP algo-
rithms, when converging, tend asymptotically to the coef-
ficient vector of equation (6),

w∞ = −E
[
P(n)

]−1
E

[
U(n)V−1(n)d(n)

]
. (6)

The expression in (6) can also be written as

w∞ = wo − E
[
P(n)

]−1
E

[
U(n)V−1(n)νo(n)

]
, (7)

where νo(n) = d(n) + UT (n)wo is the optimal resid-
ual error. The orthogonality principle here imposes that
E

[ ∑K
k=1 uk(n)

(
dk(n) + uT

k (n)wo

)]
= 0 but this con-

dition is not sufficient to guarantee E
[
U(n)V−1(n)νo(n)

]
to be zero. Indeed, in active noise control systems, the sec-
ondary paths are often non-minimum-phase and do not ad-
mit a causal inverse system [6]. In such cases, the active
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noise controller operates as a predictor [6]. Moreover, most
multichannel active noise control problems, even in absence
of measurement noise, do not have an exact solution. For
these reasons the optimal residual error ν o(n) is often col-
ored and correlated with U(n). Consequently the asymp-
totic solution of the AP algorithms in (6) differs from the
minimum-mean-square solution in (5).

4. STEADY-STATE AND TRANSIENT ANALYSIS

For the transient analysis we are interested in the time evo-
lution of E[‖w̃(n)‖Σ] for a suitable coefficient error vector
w̃(n) and for some appropriate choices of the symmetric
positive definite matrix Σ. Usually the coefficient error vec-
tor w̃(n) is defined as the difference between w(n) and the
minimum-mean-square solution, i.e. w̃(n)=w(n)-wo. In-
deed, in most of the approaches presented in literature the
choice of working with wo is motivated by the fact that,
thanks to the orthogonality principle, a simple updating re-
lation for E

[‖w̃(n)‖2
Σ

]
can be easily derived. In our case

the filtered-x AP algorithms do not converge to wo and the
residual error νo(n) is colored and correlated with U(n).
For these reasons, we do not have here any advantage from
the use of wo in w̃(n) and we prefer to define w̃(n)=w(n)-
wa, where the auxiliary vector wa is given by equation (8),

wa = −E
[(

I − µP(n)
)
ΣP(n)

]−1·
E

[(
I− µP(n)

)
ΣU(n)V−1(n)d(n)

]
. (8)

With this choice of the auxiliary vector wa an efficient re-
cursion can be derived for E[‖w̃(n)‖Σ]. By assuming w̃(n)
to be uncorrelated with P(n) and with U(n)V−1(n)d(n),
it can be shown from equations (4) and (8) that

E[‖w̃(n + 1)‖Σ] = E[‖w̃(n)‖Σ′ ]+
µ2E[νT

a (n)V−1(n)UT (n)ΣU(n)V−1(n)νa(n)], (9)

where Σ′ = E[
(
I−µP(n)

)
Σ

(
I−µP(n)

)
] and νa(n) =

d(n) + UT (n)wa. By using the inverse vector operator,
equation (9) can be written in the form of equation (10),

E[‖w̃(n+1)‖vec−1{σ}] = E[‖w̃(n)‖vec−1{Fσ}]+µ2γT
a σ,
(10)

where σ = vec{Σ}, F = I−µ(E[P(n)]⊗I+I⊗E[P])+
µ2E[P(n)⊗P(n)] and γa = vec{E[U(n)V−1(n)νa(n) ·
νT

a (n)V−1(n)UT (n)]}. For compactness, in what follows
we will drop the notation vec−1{·} from the subscript of the
weighted Euclidean norm and we will keep only the vectors
σ and Fσ.

By following the same derivations of [4] we can arrive
to the following result:

Under the assumption that w̃(n) is uncorrelated with
P(n) and with U(n)V−1(n)d(n), the transient behavior

of the filtered-x AP algorithms with updating rule given by
equations (1) is described by the state recursion

W(n + 1) = F W(n) + µ2Y (11)

where

F =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
−p0 −p1 −p2 . . . −pM2−1

⎤
⎥⎥⎥⎥⎥⎦

,

W(n) =

⎡
⎢⎢⎢⎣

E[‖w̃(n)‖σ
E[‖w̃(n)‖Fσ

...
E[‖w̃(n)‖FM2−1σ

⎤
⎥⎥⎥⎦, Y =

⎡
⎢⎢⎢⎣

γT
a σ

γT
a Fσ
...

γT
a FM2−1σ

⎤
⎥⎥⎥⎦,

and the pi are the coefficients of the characteristic polyno-
mial of F, i.e. p(x) = xM2

+ pM2−1x
M2−1 + . . . + p1x +

p0 = det(xI − F).
A part from the different definition of the involved ma-

trices, the result of equation (11) is the same of Theorem 1
of [4]. Therefore the same conclusions of [4] can be applied
for the mean-square stability of the algorithm.

We are also interested in the values of the mean-square-
error (MSE) and the mean-square-deviation (MSD) at stea-
dy-state. It can be proved that these values can be estimated
with the expressions of equations (12) and (13), respec-
tively,

lim
n→∞E[

∑K
k=1 ‖d(n) + wT (n)uk(n)‖2] =

lim
n→∞E[‖w(n) − wa‖2

Ruu
] + E[

∑K
k=1 ‖dk(n)‖2]+

2wT
∞Rud + 2wT

a Ruuw∞ − wT
a Ruuwa, (12)

lim
n→∞E[‖w(n) − w∞‖2] =

lim
n→∞E[‖w(n) − wa‖2

I ] + ‖wa − w∞‖2, (13)

where, similarly to [4],

lim
n→∞E[‖w(n) − wa‖2

Σ ] = µ2γa(I − F)−1σ, (14)

with Σ = Ruu in equation (12) and Σ = I in equation (13).

5. EXPERIMENTAL RESULTS

In this section we show some experimental results obtained
with a multichannel active noise control system with I = 1,
J = 2, K = 2. The impulse responses of the primary paths
were p11(n) = [0, 0, 1,−0.3, 0.2] and p21(n) =
[0, 0, 1,−0.2, 0.1], while those of the secondary paths were
s11(n) = [0, 2,−0.5, 0.1], s12(n) = [0, 2,−0.3,−0.1],
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Fig. 2. Theoretical (–) and simulation values (- -) of steady-
state MSE of the exact (APA-E) and approximate (APA-A)
algorithms for AP orders L = 1, 2 and 3 versus step-size.

Table 1. Minimum-mean-square and asymptotic solutions
of the exact (APA-E) and approximate (APA-A) algorithms
for AP orders L = 1, 2 and 3.

wo w∞ APA-E w∞ APA-A
L=1 L=2 L=3 L=1 L=2 L=3

0.93 0.97 0.91 0.88 0.92 0.85 0.84
-0.71 -0.79 -0.67 -0.66 -0.72 -0.67 -0.66
0.21 0.31 0.23 0.27 0.24 0.19 0.15
-0.06 -0.13 -0.12 -0.14 -0.08 -0.05 -0.04
-0.93 -0.88 -0.71 -0.66 -0.92 -0.85 -0.83
0.27 0.21 0.06 0.12 0.25 0.17 0.16
-0.25 -0.27 -0.26 -0.28 -0.23 -0.18 -0.15
-0.03 0.01 0.02 0.00 -0.03 -0.05 -0.07

s21(n) = [0, 1,−0.7,−0.2], s22(n) = [0, 1,−0.2, 0.2]. The
input signal was a zero mean, unit variance colored Gaussian
noise with E[x(n)x(n − m)] = 0.9|m| and a zero mean,
white Gaussian noise was added to dk(n) to get a 40 dB
signal-to-noise ratio. The controller was a two-channel lin-
ear filter with memory length 4, i.e. with M=8. Table 1 pro-
vides the minimum-mean-square and the asymptotic solu-
tions of the exact and approximate filtered-x AP algorithms
with two-digits precision. The norm of the error between
wo and w∞ in this case increases with the AP order L.
In fact, due to the correlation between ν o(n) and U(n), in
equation (7) the norm of E

[
U(n)V−1(n)νo(n)

]
increases

with the AP order. Fig. 2 and Fig. 3 diagram the MSE and
the MSD of the algorithms, estimated with equations (12)
and (13) or obtained from simulations, at different values of
step-size µ and for the AP order L = 1, 2 and 3. In Fig. 2
and Fig. 3 the theoretical values of MSE and MSD fall close
to the corresponding simulation values. Depending on the
AP order L and on the step-size µ, the estimation errors can
assume both positive or negative values. The approximate
algorithm provides a lower MSE and MSD than the exact al-
gorithm but we must point out that it provides also a lower
convergence speed.
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Fig. 3. Theoretical (–) and simulation values (- -) of steady-
state MSD of the exact (APA-E) and approximate (APA-A)
algorithms for AP orders L = 1, 2 and 3 versus step-size.

6. CONCLUSION

In the paper we have provided an analysis of steady-state
and transient behavior of a couple of multichannel filtered-
x AP algorithms. The analysis relies on energy conserva-
tion arguments and it does not apply IT nor it imposes any
restriction to the signal distributions. We have also shown
that filtered-x AP algorithms always provide a biased esti-
mate of the minimum-mean-square solution of active noise
control problem. In many cases the bias is small and there-
fore the filtered-x AP algorithms can be profitably applied
to active noise control.
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