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Abstract— This paper deals with the problem of efficient digital
filter structures with roundoff noise consideration. Two efficient
structures are analyzed for the implementation scheme of round-
ing before multiplication. The first one is the recently proposed
direct-form II transposed structure in ρ-operator (ρDFIIt) [6],
based on which, a revised ρDFIIt structure, denoted as ρRDFIIt,
is obtained. It is shown that an ρRDFIIt structure, having the
same implementation complexity as that of the corresponding
ρDFIIt, yields a smaller roundoff noise gain than the latter. The
roundoff noise gain for an ρRDFIIt structure with error feedback
is also derived. The optimal structure problem is formulated and
solved for each structure. A numerical example is presented to
illustrate that the optimized structures are very competitive for
that they can even over-perform the traditional optimal state-
space realization in terms of the roundoff noise performance as
well as the implementation complexity.

I. INTRODUCTION

Roundoff noise has been considered as one of the most

serious issues in digital filter implementation. There are two

rounding schemes: rounding after multiplication (RAM) and

rounding before multiplication (RBM). It is well known that

roundoff noise gain can be reduced considerably by the appro-

priate selection of filter structures. For practical considerations,

it is desired that the actually implemented filters have a nice

performance as well as a simple structure that possesses many

trivial parameters1, which can be implemented exactly and

produce no rounding errors.

The optimal state-space realization design [1]-[4] has been

known as one of the effective methods to reduce the roundoff

noise. For a digital filter of order p, such an optimal realization

has (p + 1)2 nontrivial parameters, which is obviously not

efficient for implementation. It is well known that though hav-

ing poor numerical properties, the conventional shift operator

based direct forms are the simplest structures and among all

these forms, the direct-form II transposed (DFIIt) structure

has the lowest quantization noise level at output. In [5], the

DFIIt structure in delta operator (δDFIIt) was investigated for

an arbitrary order IIR filter, but it was found that it has a

very good performance just for the type of low-pass narrow

band filters. Incited by this fact and based on the concept

of polynomial operators [4], a set of special operators was

derived, with which a generalized DFIIt structure, denoted as

ρDFIIt, was obtained in [6]. This structure, having only 3p+1

1By trivial parameters we mean those which are 0 and ±1. Other param-
eters are, therefore, referred to nontrivial parameters.

nontrivial parameters plus p free parameters at choice, can

be used for any type of digital filters to minimize roundoff

noise gain. The performance of this structure was analyzed in

[6] for the RAM scheme. Error feedback [8]-[9] is another

effective technique for reducing roundoff noise in the RBM

scheme. This is achieved by extracting the quantization error

and feeding it back through simple circuits. In [9], a number

of results in computing the optimal error feedback coefficients

were given for a given state-space realization.

In this paper, two efficient structures are analyzed for the

RBM scheme. The first one is the ρDFIIt structure proposed

in [6], for which the expressions of roundoff noise gain are de-

rived. More importantly, a revised ρDFIIt structure, denoted as

ρRDFIIt, is obtained. It is shown that this structure, having the

same implementation complexity as that of the corresponding

ρDFIIt, yields a smaller roundoff noise gain than the latter.

The performance of this new structure with error feedback

is also analyzed. All these structures can be optimized. An

example is given to illustrate the design procedure and to

compare the performance of the optimized structures with that

of the traditional optimal state-space realization.

Throughout this paper, Ip and tr(A) denote the identity

matrix of dimension p× p and the trace of a square matrix A,

respectively. The transpose of a matrix A is indicated by AT .

em is the m-th elementary (column) vector, whose elements

are all zeros except the m-th which is one.

II. ρDFIIT STRUCTURE AND ROUNDOFF NOISE GAIN

Consider the following time-invariant linear digital filter

H(z) given by

H(z) =
b0zp +b1zp−1 + · · ·+bp−1z+bp

a0zp +a1zp−1 + · · ·+ap−1z+ap
(1)

where a0 = 1. This filter can be implemented with many

different structures. In this section, we will analyze the

roundoff noise performance of the ρDFIIt structure recently

proposed in [6] for the RBM implementation scheme.

A. The ρDFIIt Structure

The block diagram of an ρDFIIt structure is depicted in

Fig. 1 and 2, where

ρk(z)
�
=

z− γk

∆k

�
= ρk, k = 1,2, · · · , p (2)
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Fig. 1. ρDFIIt structure

Fig. 2. A realization of operator ρ−1
k

with {γk} and {∆k > 0} two sets of free parameters and{[
α0 α1 · · · αp

]T = κ−1T̄−T Va
�
= Vα[

β0 β1 · · · βp
]T = κ−1T̄−T Vb

�
= Vβ

(3)

where

Va
�
=

[
a0 a1 · · · ap

]T
, Vb

�
=

[
b0 b1 · · · bp

]T

and κ = ∏p
k=1 ∆k certifies that α0 = 1, T̄ ∈ R(p+1)×(p+1) is an

upper triangular matrix whose mth row is determined by the

coefficients of the polynomial ∏p
k=m ρk for m = 1,2, · · · , p and

T̄ (p+1, p+1) = 1.

Choosing {xk(n)} indicated in Fig. 2 as the state vari-

ables, one can obtain the equivalent state-space realization

(Aρ,Bρ,Cρ,β0) as{
x(n+1) = Aρx(n)+Bρu(n)

y(n) = Cρx(n)+β0u(n)
(4)

with

Aρ = Dγ +AoD∆, Bρ = β̄−β0ᾱ, Cρ = eT
1 D∆ (5)

where Dγ
�
= diag(γ1,γ2, · · · ,γp) and D∆

�
= diag(∆1,∆2, · · · ,∆p)

are two diagonal matrices, Ao ∈ Rp×p is a zero matrix except

Ao(k,1) =−αk, ∀k and Ao(k,k+1) = 1 for k = 1,2, · · · , p−1,

and

ᾱ �
=

[
α0 α1 · · · αp

]T
, β̄ �

=
[

β0 β1 · · · βp
]T

.

The transfer function is then

H(z) = β0 +Cρ(zIp −Aρ)−1Bρ. (6)

It is well known [1], [2] that any structure has to be l2-scaled

in order to sustain all the state variables within a specified

dynamical range. This can be achieved by the following choice

of parameters {∆k} for a given set {γk}

∆1 =
√

W̄ ρ
c (1,1), ∆k =

√
W̄ ρ

c (k,k)
W̄ ρ

c (k−1,k−1)
, k = 2,3, · · · , p

(7)

where W̄ ρ
c is the controllability gramian of (Āρ, B̄ρ,C̄ρ,β0)

corresponding to ∆k = 1,∀k. For the detailed discussion on

the ρDFIIt structure, please refer to [6].

One can note that under the l2-scaling, the ρDFIIt structure

is uniquely determined by the parameters {γk}, which, gen-

erally speaking, can be chosen arbitrarily. For a fixed-point

implementation of Bc bits, these free parameters {γk} can be

chosen from a discrete space:

Sγ
�
= {−1, 1}∪{±

Bγ

∑
m=1

bm2−m, bm = 0,1, ∀m} (8)

where Bγ is an integer, satisfying Bγ << Bc. Under such a

constraint, the free parameters {γk} produce either no roundoff

noise at all or a much smaller one than that caused by the

non-free parameters {αk}, {βk} and {∆k}. Consequently,

the roundoff noise due to the multiplication with γk can be

neglected, see [9], [10].

B. Roundoff Noise Gain for RBM Scheme

Looking at Fig. 1 - 2, the signals to be rounded under

the RBM scheme are y(n) and {xk(n)}, which have to be

multiplied with {αk} and {∆k}, respectively. With referring to

the roundoff noise analysis in [6], it can be shown that the

roundoff noise gain due to the rounding of y(n) is given by

Gy = ᾱT W ρ
o ᾱ (9)

where W ρ
o is the observability gramian of the realization

(Aρ,Bρ,Cρ,β0). Similarly, the roundoff noise gain due to the

rounding of state variables {xk(n)} is given by

Gxk =
{

∆2
1(1+ ᾱT W ρ

o ᾱ), k = 1

∆2
keT

k−1W ρ
o ek−1, k = 2,3, · · · , p

(10)

Hence, the total roundoff noise gain of the ρDFIIt structure

in terms of RBM scheme, defined as Gρ
�
= Gy +∑p

k=1 Gxk , is

Gρ = ᾱTW ρ
o ᾱ+∆2

1(1+ ᾱTW ρ
o ᾱ)+ tr(W ρ

o Q∆) (11)

where Q∆ = diag(∆2
2,∆

2
3, · · · ,∆2

p,0).

III. REVISED ρDFIIT STRUCTURES WITH/WITHOUT

ERROR FEEDBACK

It has been found that the contribution of Gx1 to Gρ in (11)

can be very significant. Based on this observation, we propose

a new structure depicted in Fig. 3, where

βr0 = ∆−1
1 β0, αrk = ∆1αk, ∀k

and ρ−1
k , k = 2,3, · · · , p, is still implemented with Fig. 2. It’s

found that this structure, denoted as ρRDFIIt for convenience,

can be viewed as a cascade implementation of the transfer

function H(z) = ∆1H̄(z) with H̄(z) realized by an ρDFIIt in

which the operator ρ−1
1 has its ∆-parameter equal to one. The

corresponding state-space realization of the transfer function
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Fig. 3. ρRDFIIt structure

Fig. 4. A realization of operator ρ−1
k with error feedback

H̄(z) implemented with Fig. 3, denoted as (Ar,Br,Cr,βr0), is

clearly given by

Ar = Aρ, Br = Bρ, Cr = ∆−1
1 Cρ. (12)

Denote y0(n) as the output of H̄(z) excited with u(n), hence

y(n) = ∆1y0(n). It can be observed that the signals to be

rounded in ρRDFIIt are y0(n) and {xk(n), k = 2,3, · · · , p}. It

follows from the roundoff noise analysis in Section II-B and

noting the fact that there is no roundoff noise due to the state

variable x1(n) in Fig. 3 that the total roundoff noise gain of

the ρRDFIIt structure is

Gr = ∆2
1(1+ ᾱT W ρ

o ᾱ)+ tr(W ρ
o Q∆) (13)

where Q∆ is defined before.

Comparing (11) with (13), it is clear that Gρ = Gr +
ᾱT W ρ

o ᾱ > Gr. The difference, ᾱT W ρ
o ᾱ, depending on the

filters, can be very large. This is the motivation to propose

the ρRDFIIt structure indeed.

The performance of this ρRDFIIt structure can be further

improved with using error feedback. In what follows, we apply

error feedback technique to the ρRDFIIt structure, and the

resultant realization, denoted as ρREF, is depicted in Fig.

3 - 4, where the state residue exk(n) is fed back through

a constant coefficient dk into the filter. The error feedback

coefficients {dk} are chosen such that the roundoff noise gain

is minimized. In order to avoid new roundoff noise sources

caused by these coefficients, {dk} are usually constrained to

a Bd-bit format number with Bd << Bc [9], that is dk ∈ Sd ,

where

Sd
�
= {−1, 1}∪{±

Bd

∑
m=1

bm2−m, bm = 0,1, ∀m} (14)

so that the roundoff noise due to the multiplication with dk
can be neglected.

With some manipulations, it can be shown that the total

roundoff noise gain for ρREF is

Ge = ∆2
1(1+ ᾱT W ρ

o ᾱ)+
p

∑
k=2

V T
k W ρ

o Vk (15)

where Vk
�
= dkek −∆kek−1. Clearly, Ge is equal to Gr when

dk = 0, ∀k.

IV. STRUCTURE OPTIMIZATION

In the previous sections, we have derived the expressions

of roundoff noise gain for the ρDFIIt structure and its revised

version ρRDFIIt with/without error feedback in terms of RBM

scheme.

Denote

γ̄ �
=

[
γ1 γ2 · · · γp

]T
, d̄

�
=

[
d2 d2 · · · dp

]T
.

Let S̄γ ∈ R1×p and S̄d ∈ R1×(p−1) as the spaces from which γ̄
and d̄ take values, respectively. It follows from (8) and (14)

that

S̄γ = {γ̄ : γk ∈ Sγ, ∀k}, S̄d = {d̄ : dk ∈ Sd , ∀k}. (16)

A. Optimized ρDFIIt and ρRDFIIt (without error feedback)
structures

Since the roundoff noise performance depends on the choice

of the free parameters {γk}, one can form the optimal structure

problems below:

min
γ̄∈S̄γ

Gρ =⇒ γ̄(Gopt
ρ ), min

γ̄∈S̄γ
Gr =⇒ γ̄(Gopt

r ). (17)

This minimization problem, can be solved using exhaustive

searching because S̄γ given by (16) contains (2Bγ+1 + 1)p

elements. This may need a long time to run the program

when p is large, though for the off-line design, it is not

a big problem. We have developed a genetic algorithm to

find the optimal structures. A numerical example shows that

this program yields a structure which has almost the same

roundoff noise gain as that of the structure obtained with

exhaustive searching but much more efficient than the latter.

B. Optimized ρREF structure

Since roundoff noise gain of the ρREF is a function of

both γ̄ and d̄, the corresponding optimal structure problem is

formulated as

min
γ̄∈S̄γ, d̄∈S̄d

Ge. (18)

In [9], the roundoff noise gain was minimized with consider-

ing the error feedback coefficients as continuous variables and

the optimal error feedback coefficients of Bd-bit format were

then obtained by truncating the resultant optimal continuous
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coefficients into Bd-bit representations. Following the same

approach, (18) can be solved as follows.

First of all, we note that for a given γ̄, the roundoff noise

gain Ge can be minimized with respect to d̄ analytically. In

fact, taking the first derivative of (15) with respect to dk and

letting it be zero, the optimal continuous dk, denoted as dopt
k ,

can be obtained as

dopt
k = ∆k

eT
k W ρ

o ek−1

eT
k W ρ

o ek
, k = 2,3, · · · , p. (19)

With such a choice of {dk}, the corresponding Ge is equal to

Ge = Gr −
p

∑
k=2

∆2
k
(eT

k W ρ
o ek−1)2

eT
k W ρ

o ek

�
= Geo (20)

which is obviously smaller than Gr by (13). The price paid is

p−1 more nontrivial parameters.

The optimal γ̄ can then be obtained by solving

min
γ̄∈S̄γ

Geo =⇒ γ̄(Gopt
e ) (21)

which, by nature, is exactly the same problem as (17) and

can be attacked using the same genetic algorithm. With the

optimal γ̄, one can compute the corresponding W ρ
o and hence

dopt
k by (19). The optimal error feedback coefficients of Bd-bit

format are obtained by truncating dopt
k into Bd bits.

V. NUMERICAL EXAMPLE

In this section, we will present a design example to

illustrate the performance of the optimized ρDFIIt and

ρRDFIIt with/without error feedback structures. In what

follows, Bγ = 4 is assumed. The optimal sets of γ̄ for

(17) and (21) are found with using our genetic algorithm.

For convenience, denote the optimal fully parameterized

state-space realization [1], [2] as Ropt .

Example: This is a sixth order low-pass Butterworth dig-

ital filter, generated with MATLAB command [Vb,Va] =
butter(6,0.1). For this example, computation shows that

γ̄(Gopt
ρ ) = [0.8125 0.8125 0.8125 0.8125 0.75 0.75]

γ̄(Gopt
r ) = [0.8125 0.8125 0.8125 0.75 0.75 0.75]

γ̄(Gopt
e ) = [0.875 0.8125 0.75 0.75 0.75 0.75]

and the optimal continuous error feedback coefficients d̄
obtained through γ̄(Gopt

e ) is

d̄opt = [0.132295 0.210031 0.218724 0.225550 0.231134].

Table I presents the statistics of the roundoff noise gain

G and the number of nontrivial parameters Np for the Ropt ,

ρDFIIt, ρRDFIIt and ρREF structures. One can see that

Ropt yields a roundoff noise gain of 0.7121 and needs 49

nontrivial parameters. While the ρDFIIt structure yields

a roundoff noise gain of 0.5456 with only 25 nontrivial

parameters, and the ρRDFIIt structure yields a roundoff noise

gain of 0.2290 which is about 42% of the ρDFIIt with the

TABLE I

EXAMPLE I

Realization Ropt ρDFIIt ρRDFIIt ρREF(Bd = 4)

G 0.7121 0.5456 0.2290 0.2008

Np 49 25 25 30

same implementation complexity. With truncating d̄opt into

4-bits, the ρREF yields a roundoff noise gain of 0.2008, even

smaller than that of the ρRDFIIt, but needs 5 more nontrivial

parameters as the compensation.

VI. CONCLUSION

This paper has investigated two efficient structures

with minimizing roundoff noise gain in terms of RBM

implementation scheme. The first one is the ρDFIIt structure,

and based on which, the second one is a revised version

of the ρDFIIt structure with and without error feedback. It

is shown that these structures can be optimized in terms of

minimizing roundoff noise gain. An example has been given,

which shows that the optimized structures can over-perform

the traditional optimal state-space realization in terms of

roundoff noise gain as well as the structure complexity.
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