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ABSTRACT

Orthogonal frequency division multiplexing (OFDM)
transmission systems generally have low power efficiency,
due to the large peak-to-average power ratio (PAR) of the
OFDM signal. Selected mapping (SLM) is a promising
technique to reduce the PAR for OFDM. A drawback of
SLM is its high computational requirement, which hinders
its practical implementation. In this paper, we propose a
dynamic, two-buffer structure to reduce the computational
requirement without sacrificing the PAR reduction capabil-
ity. Performance analysis and simulations of the proposed
technique are also carried out.

1. INTRODUCTION

Orthogonal frequency division multiplexing (OFDM) is
a promising technique for high speed data transmission
and has been adopted by many standards, such as IEEE
802.11a/g in the US, and DAB, DVB, HiperLAN/2 in Eu-
rope. One serious drawback of OFDM, however, is its large
peak-to-average power ratio (PAR), which causes problems
when nonlinear components such as power amplifiers and
mixers are encountered during transmission. A large PAR
also demands a large dynamic range of the analog-to-digital
converter (ADC). For the power amplifier or the mixer, a
large back-off is needed when the PAR is high, resulting
in poor power efficiency. PAR reduction is often necessary
to reduce the cost and improve the power efficiency of the
transmission system.

There has been a great deal of research on PAR reduction
for OFDM. One can pursue PAR reduction algorithms with
distortion or without distortion. Deliberate clipping is the
simplest PAR reduction method with distortion. However,
it causes increase in the symbol-error-rate (SER) and/or
spectral regrowth. Among all distortionless PAR reduc-
tion algorithms, selected mapping (SLM) is one of the most
promising [1]. SLM chooses one signal with the lowest PAR
from a set of “equivalent” signals which are related in the
frequency domain by a series of phase rotations. However,
SLM requires a large amount of additional computations,
which may hinder its practical use in high speed data trans-
missions. Tone reservation and tone injection [2] are also
distortionless PAR reduction methods, but the continuous
parameter optimization involved can be computationally
very intensive.
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To reduce the computational requirement of SLM, a sim-
ple approximation of the inverse discrete Fourier transform
(IDFT) is proposed in [3], but the price paid is degradation
in PAR reduction performance. In this paper, we propose a
dynamic SLM method that can greatly reduce the compu-
tational requirement of the SLM method without sacrificing
the PAR reduction capability.

This paper is organized as follows: In Section 2, we de-
scribe the SLM method and point out its computational
requirement as a challenge. In Section 3, we propose a dy-
namic SLM method which can greatly reduce the number of
mappings required and thus the computational requirement
as well. Section 4 concludes this paper.

2. PAR REDUCTION AND SLM

In OFDM, N frequency-domain sub-symbols {Xk}N−1
k=0 are

transformed into the time-domain by the IDFT to yield
{xn}N−1

n=0 via

xn =
1

N

N−1∑
k=0

Xk ej(2πk/N)n. (1)

Denote by PAR1 the PAR of the original OFDM signal,

PAR1 = PAR{xn} =

max
0≤n≤N−1

|xn|2

E[|xn|2] , (2)

where E[·] denotes statistical expectation.

Assume that {Xk}N−1
k=0 is stationary and that Xk and

Xl are uncorrelated for k �= l. Based on the Central
Limit Theorem, {xn}N−1

n=0 is approximately independently
and identically distributed (i.i.d.) complex Gaussian when
N is large [2]. The complementary cumulative distribution
function (CCDF) of PAR1; i.e.,the probability that PAR1

exceeds a certain threshold γ, can be calculated as [1]:

Pr{PAR1 > γ} = 1 − (1 − e−γ)N . (3)

SLM was first proposed in [1] to reduce the PAR of a given
OFDM block. The assumption is that the same phase table

{φ(d)
k }, 0 ≤ k ≤ N − 1, 1 ≤ d ≤ D, where φ

(1)
k = 0, ∀ k, is

available to both the transmitter and the receiver. In SLM,
we first rotate the phases of Xk as in

X
(d)
k = Xk ejφ

(d)
k , (4)

and then take the IDFT to obtain x
(d)
n . Although X

(d)
k and

Xk contain the same information, x
(d)
n and xn can have very

different PAR values. In SLM, x
(d̃)
n which has the lowest
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PAR among the D equivalent sequences, is transmitted;
i.e.,

d̃ = arg min
1≤d≤D

PAR{x(d)
n }. (5)

We denote the associated lowest PAR value by

PARD = min
1≤d≤D

PAR{x(d)
n }. (6)

The CCDF of PARD is given by [1]

Pr{PARD > γ} = (1 − (1 − e−γ)N )D. (7)

SLM is simple and effective. However, there are a few
points to consider:
(i) There is power cost associated with the D− 1 extra sets
of computations involved in implementing SLM: phase ro-
tations, IDFTs and PAR calculations. It was shown in [4]
that the amount of power that can be saved by SLM well
exceeds the amount of power required for its implementa-
tion.
(ii) The receiver needs to know the optimal phase sequence

index d̃ in order to decode. Blind SLM methods that avoid
the transmission of such side information have been inves-
tigated; see [5], [6].
(iii) In SLM, a fixed number of D mappings are performed
at the transmitter, which consume approximately D times
the computational resources as compared to the original
OFDM. For simplicity, let us approximate the computa-
tional overhead of SLM by the amount of computation
needed for the IDFTs. For example, an N -point IDFT can
be implemented very efficiently on the Texas Instruments
’C6x� DSP which requires a total of (2N + 16) log2 N + 25
clock cycles. When D = 16 and N = 128, the required
number of DSP clock cycles is 30864, which implies that the
sampling rate cannot exceed 128 × 150 × 106/30864 = 622
thousand-samples-per-second at a 150 MHz clock rate, and
thus the signal bandwidth cannot exceed 311 kHz, which is
very limiting for modern communications applications. A
larger bandwidth can be accommodated by lowering D, at
the expense of less PAR reduction in SLM.

The objective of this paper is to build upon the SLM
framework, devise a PAR reduction method that has simi-
lar performance as SLM, but that requires much less com-
putational resources than SLM.

3. DYNAMIC SLM SCHEME FOR PAR
REDUCTION

The idea of SLM is to find among D equivalent signal rep-
resentations, the one that has the lowest PAR, to transmit.
Since physical devises (such as ADCs, PAs) have a finite
dynamic range, there is a practical limit γ for the PAR.
From (7), for finite N and D values, there is always a non-
zero probability that even after D mappings, SLM will not
be able to reach a given PAR reduction threshold, and thus
the peak of the OFDM block will be clipped. Often times in
practice, the goal is to meet a certain threshold on the PAR,
and minimizing the PAR for each OFDM block is not nec-
essary. In that spirit, our problem can be stated as: Given
a PAR threshold γ and a small positive number ε, devise an
efficient PAR reduction scheme to make Pr{PAR > γ} ≤ ε.

For a given sequence {Xk}, each mapping can be regarded
as a Bernoulli trial that reduces the PAR of the mapped se-
quence to below the threshold γ with probability (1−e−γ)N

(c.f. (3)). Denote by Z the random variable corresponding

to the first successful trial that realizes the goal PAR < γ;
Z has a Geometric distribution; i.e.,

Pr{Z = d} = a(1 − a)d−1, (8)

where

a = (1 − e−γ)N , (9)

and d = 1, 2, . . ..
Let us consider an example, where N = 128 and γ = 7 dB

(i.e., γ = 5.012). We find from (7) that Pr{PAR1 ≤ γ} =
0.4252, Pr{PAR2 ≤ γ} = 0.6696, . . . , Pr{PAR16 ≤ γ} =
0.9999. This means that there is a 43% chance that a given
OFDM block already has a low enough PAR and thus PAR
reduction is not necessary. There is a 67% chance that SLM
with D = 2 is sufficient in meeting the PAR goal. If we want
Pr{PARD > γ} ≤ 10−4, in the above example, the required
D is 16. However, as we have seen, D = 16 mappings are
not necessary for some of the OFDM blocks. In fact, the
expected number of mappings Z needed to achieve a target
PAR threshold γ can be calculated as follows [4]

E[Z] =

∞∑
d=1

d × a × (1 − a)d−1 =
1

a
=

1

(1 − e−γ)N
. (10)

For N = 128, we infer from (10) that E[Z] = 2.35 mappings
are required on average to satisfy PAR ≤ 7 dB.

A simple, modified SLM algorithm can be considered: If
a given OFDM block has PAR1 ≤ γ, transmit it as is; other-
wise, try an increasing number of mappings until PARd ≤ γ
is realized. If after the maximum allowed D number of map-
pings, PARD is still > γ, stop trying and transmit the signal
representation with the lowest PAR. This method reduces
the computational load, but causes a delay jitter (variable
latency) problem that is undesirable.

Our goal in this paper is to improve upon SLM, to reduce
the computational demand without introducing delay jit-
ter and without sacrificing the PAR reduction performance.
We shall achieve this by employing input and output buffers
and a dynamic SLM mechanism.

3.1. Queuing Model of Dynamic SLM

A dynamic SLM scheme with two buffers is shown in Fig.
1. The input buffer contains OFDM blocks to be processed
(PAR reduced). The output buffer contains OFDM blocks
that have been processed and are ready to be transmitted.
In the SLM processing unit, the task is to reduce the PAR
of a given OFDM block by different mappings until one
mapping has a PAR that is less than γ. This processed
OFDM block will then be transferred to the output buffer.
If the input buffer is not empty, the next available OFDM
block in the input buffer will be retrieved by the SLM pro-
cessing unit. Let us denote by T the OFDM block arrival
interval at the input buffer. Denote by C the processing
time needed for one mapping (phase rotations, IDFT, and
PAR calculation). Assume that L = T/C is an integer.
Assume that M × T is the total delay between an OFDM
block’s arrival at the input buffer and its departure from
the output buffer. The total number of OFDM blocks in
the two buffers and in the SLM processing unit is M which
is a constant.

To describe the queuing behavior of the input and output
buffers, we introduce the following notations: th = (hT ),
t−h = (hT ) − δ, t+h = (hT ) + δ, where δ is a positive but

infinitesimally small number. t−h and t+h stand for the time
instants immediately before and after th, respectively. We
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assume that at t+h , one OFDM block arrives at the input
buffer and one OFDM block departs from the output buffer.
If one OFDM block is retrieved by the SLM processing unit
from the input buffer at t+h , and d mappings are carried out
for PAR reduction, then this block will arrive at the output
buffer at time instant (th + dC)−. The queue lengths of
both buffers are measured at time instants th, h = 1, 2, 3....

Figure 1. Queuing model for the proposed dynamic
SLM scheme.

The arrival process of the input buffer is a deterministic
process with a fixed interval T . The service time of the
SLM processing unit is the time used to map the sequences
and search for a qualified phase rotation sequence to meet
the PAR threshold. The departure process of the input
buffer and the arrival process of the output buffer have the
same statistical behavior; their rates are determined by the
number of mappings needed to meet the PAR threshold.
To avoid any delay jitter, we require that the departure
process of the output buffer be a deterministic process with
the same fixed interval T as well. This fixed departure rate
requires that the output buffer cannot be empty at any time
instant th, h = 1, 2, 3, . . ..

During one sample interval T , L mappings can be per-
formed. Denote by random variable Y the number of
OFDM blocks that can be processed by the SLM processing
unit in the hth sample interval between time instants th and
th+1, and treat one mapping as a Bernoulli trial for PAR
reduction. Then Y is the number of successes in L trails,
which is Binomial distributed if there is no underflow in
either the output buffer or the input buffer:

Pr{Y = y} = Ba(y|L) =

(
L

y

)
(1 − a)L−y ay, (11)

for y = 0, 1, 2, ..., L.
Denote by random variable S the queue length of the

output buffer at time instant th. Therefore, the number of
OFDM blocks in the input buffer and the SLM processing
unit is M − S at time instant th. Because one new OFDM
block arrives at the input buffer at time instant t+h , M−S+1
is the upper bound for Y . If M −S +1 ≥ L, the probability
mass function of Y is also given by (11). On the other hand,
if M − S + 1 < L, the probability mass function of Y is:

Pr{Y =y}=

{
Ba(y|L), if y = 0, 1, . . . ,M−S,∑L

i=y Ba(i|L), if y = M − S + 1.
(12)

However, with this arrival rate to the output buffer, the
output buffer will underflow when Y = 0 happens S times
consecutively, thus causing delay jitter in the departure pro-
cess of the output buffer. For that reason, a feedback path
from the output buffer to the SLM processing unit is added.
If at time instant th, there is only one OFDM block left in
the output buffer (S = 1), and the SLM algorithm can-
not find a suitable mapping to reduce the PAR to γ for
the given data between time instants th and th+1, the SLM

processing unit will be forced to produce an output to be
pushed to the output buffer at t−h+1 even though its PAR
is higher than γ. For the case with S = 1 and M ≥ L, the
probability mass function of Y including the feedback is:

Pr{Y = y} =

{
Ba(0|L) + Ba(1|L), if y = 1,
Ba(y|L), if 2 ≤ y ≤ L.

(13)

For the case with S = 1 and M < L, the probability mass
function of Y including the feedback is:

Pr{Y =y}=

⎧⎨
⎩

Ba(0|L) + Ba(1|L), if y = 1,
Ba(y|L), if 2 ≤ y≤M−1,∑L

i=y Ba(i|L), if y = M.
(14)

For the case with S > 1, (11) holds for M −S +1 ≥ L, and
(12) holds for M − S + 1 < L.

3.2. Performance analysis

As in SLM, dynamic SLM can only guarantee that the re-
sulting PAR is smaller than γ with a certain probability.
Denote by R(γ) the probability that the dynamic SLM fails
to reduce PAR to γ. The failure only happens when S = 1
at th and the Bernoulli trial fails L times between time
instants th and th+1. Therefore, we have

R(γ) = Pr{S = 1}Ba(0|L). (15)

For given L and M values, R(γ) is proportional to Pr{S =
1}, the probability that there is only one OFDM block in
the output buffer at time instant th. The queue length of
the output buffer is analyzed in this section using a Markov
model.

Assume that the OFDM blocks are mutually independent
and that the phase rotation sequences are mutually inde-
pendent. The queue length of the output buffer at time
instant th, h = 0, 1, 2, . . ., represents the status of the dy-
namic SLM scheme, which can be modeled by a Markov
chain with M states. The probability transition matrix can
be written as P = [Pil]M×M , where Pil is the probability
that S = i at time instant th+1 conditioned on S = l at
time instant th. That means Y = i − l + 1 OFDM blocks
arrive at the output buffer and one OFDM block departs
from the output buffer between time instants th and th+1.

Due to the feedback from the output buffer to the in-
put buffer, P11 = Ba(0|L) + Ba(1|L), which is Pr{Y = 1}
in (13). If M − L + 1 ≤ l ≤ M , the input buffer
has a certain probability to underflow, so that PMl =∑L

y=M−l+1 Ba(y|L), which is Pr{Y = M − S + 1} in

(12). For the case without feedback and underflow, Pil =
Ba(i − l + 1|L), which is Pr{Y = y} in (11). In summary,
the value of Pil can be expressed as:

Pil =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∑2−l
y=0 Ba(y|L), i = 1, and 1 ≤ l ≤ 2,

Ba(i − l + 1|L), 2 ≤ i ≤ M − 1, and
max(1, i +1 −L)≤ l ≤ i + 1,∑L

y=M−l+1 Ba(y|L), i = M, and
max(1, M − L + 1)≤ l ≤M,

0, otherwise.

Denote π = [π1, π2, . . . , πM ]T as the steady state vector

of the Markov chain, and
∑M

k=1 πk = 1. The element πi

represents the probability that i blocks are in the output
buffer at time th. π is the eigen vector of the probabil-
ity transition matrix P corresponding to the eigen value 1.
Then the probability that PAR > γ is given by

R(γ) = π1Ba(0|L), (16)
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which happens when the SLM algorithm fails to reduce the
PAR to below γ between time instants th and th+1 for S =1.

SLM can be viewed as a special case of the dynamic SLM
with L = D and M = 1, for which π1 = 1. Therefore, (16)
reduces to R(γ) = 1 × Ba(0|L) = (1 − a)D, which agrees
with (7).

3.3. Example

In this example, we assume that the OFDM signal has N =
128 sub-carriers, the information symbol is randomly picked
from a QPSK signal constellation Assume that the dynamic
SLM uses L = 3, and M = 4. The corresponding Markov
model has 4 states. The state diagram is shown in Fig. 2
and the transition probability matrix P is:⎡
⎢⎣

∑1
i=0 Ba(i|L) Ba(0|L) 0 0
Ba(2|L) Ba(1|L) Ba(0|L) 0
Ba(3|L) Ba(2|L) Ba(1|L) Ba(0|L)

0 Ba(3|L)
∑3

i=2 Ba(i|L)
∑3

i=1 Ba(i|L)

⎤
⎥⎦ .

By solving π = Pπ, we obtain

π =
1

C

[
(1 − a)9, (1 − a)6a2(3 − 2a),

(1 − a)3a3(1 + 6a − 9a2 + 3a3),

a5(3 − 2a)(2 + 3a − 6a2 + 2a3)
]T

,

where C = 1−9a+39a2 −103a3 +186a4 −234a5 +221a6 −
150a7 + 60a8 − 10a9, and

R(γ) = π1Ba(0|3) =
(1 − a)12

C
. (17)

1 2 3 4

P11

P12

P21

P22

P32

P23

P31 P42

P34

P43

P44

P33

Figure 2. State diagram for the Markov Chain.

50,000 OFDM blocks were used for the verification of
the CCDF expressions. Fig. 3 shows the theoretical R(γ)
(c.f. (17)) as a solid line (indicated by DSLM) for L = 3,
M = 4, as well as the sample R(γ) values as marked points.
For comparison, the CCDF curves of SLM (c.f. (7)) with
L = 1, 3, 9, 12, are also included. In Fig. 3, we observe
that the dynamic SLM scheme with L = 3, M = 4 outper-
formed the SLM method with L = 3, although they have
the same computational requirement. On the other hand,
the dynamic SLM scheme with L = 3, M = 4 could not out-
perform the SLM method with L = 12; the computational
requirement of the latter is 4 times that of the former. Note
that in the dynamic SLM scheme, the number of mappings
conducted for each OFDM block is a random number be-
tween L = 3 and L × M = 12. At the 10−4 CCDF level,
the dynamic SLM algorithm with L = 3, M = 4 reduced
the PAR by 1.5 more dBs as compared to the SLM algo-
rithm with L = 3. The PAR reduction performance of the
dynamic SLM approach (L = 3, M = 4) was comparable
to that of the SLM algorithm with L = 12 (within 0.2 dB).
The results of this example demonstrate that the proposed
dynamic SLM technique reduces the computational load for
each OFDM block by approximately 4 times, and thus the

same DSP hardware can handle a sampling rate that is ap-
proximately 4 times of what is possible with the original
SLM.
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Figure 3. N = 128 sub-carriers. CCDF curves of
the conventional SLM with L = 1, 3, 9, 12, and
the CCDF of the dynamic SLM scheme with L = 3,
M = 4.

4. CONCLUSIONS

PAR reduction is often necessary in order to improve the
power efficiency of an OFDM system. SLM is one of the
most promising PAR reduction methods. However, its high
computation resource requirement can hinder its use in
high-speed data transmissions. In this paper, we proposed
a two-buffer, dynamic SLM scheme to reduce the compu-
tational requirement of SLM. Once the prescribed PAR
threshold is met, the algorithm stops striving for lower PAR
values. The number of mappings to try by the SLM pro-
cessing unit is dynamically assigned. The proposed algo-
rithm reduces the computational requirement without sac-
rificing the PAR reduction capability and without creating
any throughput jitter.
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