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ABSTRACT

This paper develops a Rao-Blackwellised particle filtering algo-
rithm for blind system identification. The state space model un-
der consideration uses a time-varying autoregressive (AR) model
for the sources, and a time-varying finite impulse response (FIR)
model for the channel. The multi-sensor measurements result from
the convolution of the sources with the channels in the presence of
additive noise. A numerical approximation to the optimal Bayesian
solution for the nonlinear sequential state estimation problem is
implemented using sequential Monte Carlo (SMC) methods. The
Rao-Blackwellisation technique is applied to improve the efficiency
of the particle filter by marginalizing out the AR and FIR coeffi-
cients from the joint posterior distribution. Simulation results are
given to verify the performance of the proposed method.

1. INTRODUCTION

The blind system identification problem arises in many fields, in-
cluding speech processing, communications, biomedical signal pro-
cessing, and seismology. The problem addressed in this paper is
to recover the unknown input sources, as well the unknown time-
varying AR and FIR coefficients and unknown source and mea-
surement noise variances, from the observed signals of a multiple-
input multiple-output (MIMO) system.

An important application of blind system identification tech-
niques is the recovery of speech signals in a reverberant audio en-
vironment. The reverberation of speech signals can cause signifi-
cant degradation in the perceptual quality of speech for hands-free
telephony, hearing aids, and other audio applications. A typical
acoustic impulse response (AIR) in an audio enclosure is “tailed”
with coefficients that decay smoothly towards zero, making the
channel identification problem ill-conditioned. The proposed al-
gorithm will use a Rao-Blackwellised particle filter (RBPF) to di-
rectly estimate the sources by marginalizing out the AR and FIR
coefficients. This offers a more computationally stable method for
source recovery. A previous Bayesian approach to speech derever-
beration using a filterbank implementation was presented in [1].

The use of SMC methods for nonlinear/non-Gaussian prob-
lems in signal processing was prompted by the introduction of the
resampling step into the sequential importance sampling (SIS) pro-
cedure [2]. Recent advances in computational power has led to
application in a wide variety of technical fields, including speech
processing [3], wireless communications [4], and target tracking.
A particle filtering approach can result in significant computational
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complexity, however, they lend themselves well to a parallel im-
plementation.

2. STATE SPACE MODEL
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Fig. 1. Graphical representation of state space model

The state space model under consideration is shown graph-
ically in Figure 1. The nth source sk[n] is assumed to evolve
according to the following P -order time-varying autoregressive
(TVAR) model:

sk[n] = a
T
k,nsP,k−1,n + vk−1[n]. (1)

The source vector sP,k−1,n ∈ R
P×1 is the concatenation of the

most recent P samples at time k−1 for the nth source, and the vec-
tor ak,n ∈ R

P×1 contains the corresponding AR coefficients. The
source noise vk−1[n] ∈ R is assumed to be white Gaussian dis-
tributed with mean zero and unknown variance σ2

v,n. The source
noise variances are assumed to be independent between sources.
The following two matrix representations for the dynamics of the
N sources will be used in the development of the algorithm:

sk = AksP,k−1 + vk−1 (2)

= Sk−1ak + vk−1. (3)

The quantities Sk−1 and sP,k−1 are formed from the source sam-
ples in the set of sP,k−1,n, n = 1, 2, . . . , N , and Ak, ak are
formed from the AR coefficients contained in the set of ak,n. Ap-
propriate definitions are used in order to satisfy equation (1) for
n = 1, 2, . . . , N , but the details are omitted for lack of space.
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The time-varying AR coefficient vector ak is itself assumed to
evolve according to a first-order AR model as follows:

ak = aaak−1 + va,k−1, (4)

with 0 < aa < 1 assumed known and the noise vector va,k−1

Gaussian distributed with zero mean and known covariance Σa.
The measurement equation for the jth sensor is assumed to

evolve according to the convolution of the sources with time-varying
FIR channels in the presence of additive noise as follows:

yk[j] = h
T
k,jsL,k + wk[j]. (5)

The source vector sL,k ∈ R
NL×1 is the concatenation of the most

recent L source vectors sk−�, � = 0, 1, . . . , L − 1 at time k, and
the channel vector hk,j ∈ R

NL×1 is formed from the N FIR fil-
ters hk,j,n of length L from the nth source to the jth sensor. The
measurement noise wk[j] ∈ R is assumed to be white Gaussian
distributed with mean zero and unknown variance σ2

w,j . The mea-
surement noise variances are assumed to be independent between
sensors. The two matrix representations used for the measure-
ments at the J sensors are

yk = HksL,k + wk (6)

= Tkhk + wk. (7)

The source matrix Tk is formed from sL,k, and Hk,hk are formed
from the FIR coefficients contained in the set of hk,j in order to
satisfy (5) for j = 1, 2, . . . , J .

The time-varying FIR coefficient vector hk is assumed to evolve
according to a first-order AR model as follows:

hk = ahhk−1 + vh,k−1, (8)

with 0 < ah < 1 assumed known and the noise vector vh,k−1

Gaussian distributed with zero mean and known covariance Σh.

3. SEQUENTIAL MONTE CARLO METHODS

A Bayesian approach to the sequential state estimation problem
is to recursively compute the posterior distribution of the states,
denoted in general as x1:k, given the measurements y1:k. When
the state model is linear-Gaussian, the optimal Bayesian solution
for the recursion can be found analytically using the Kalman fil-
ter. The resulting posterior distribution in that case is Gaussian,
and therefore can be represented completely by its mean and co-
variance. The given state space model is nonlinear since both the
source and channel are unknown, so that SMC methods [5] are re-
quired. SMC methods numerically approximate the posterior dis-
tribution using a set of particles xi

k and importance weights wi
k for

i = 1, 2, . . . , Np:

p(x1:k|y1:k) ≈

Np∑
i=1

wi
kδ(x1:k − x

i
1:k) (9)

According to conventional sequential importance sampling (SIS)
theory [9], a recursion for the importance weights wi

k is given by

wi
k ∝ wi

k−1

p(yk|x
i
k)p(xi

k|x
i
k−1)

q(xi
k|x

i
1:k−1,y1:k)

. (10)

The derivation assumes the state xk is first-order Markov and the
measurement yk is only dependent on the current state and the

measurement noise. The importance weights are normalized such
that

∑
i
wi

k = 1.
In practice, SIS algorithms suffer from the problem of impor-

tance weight degeneracy, in which after a few iterations of the
recursion only one particle has a significant normalized impor-
tance weighting. The resampling step introduced in [2] reduces
the weight degeneracy by duplicating particles with large weights
and removing particles with small weights after the weight update
in (10).

An undesired consequence of resampling is that particles with
high importance weights can be selected numerous times. One
method of reintroducing statistical diversity after the resampling
procedure is the use of a Markov Chain Monte Carlo (MCMC)
step [5].

4. RAO-BLACKWELLISED PARTICLE FILTERING

The Rao-Blackwellisation (RB) strategy [9] is applied to exploit
the analytical structure in the proposed state space model. The
RB technique marginalizes out conditionally linear-Gaussian state
variables from the joint posterior distribution in order to reduce
the state dimension for the particle filtering algorithm. This strat-
egy can be shown to reduce the variance of the state estimates
obtained using the particle filter [9]. The intuition behind this
results is that a particle filter is now only used to estimate the
truly nonlinear/non-Gaussian states, while the remaining condi-
tional linear-Gaussian states can be estimated analytically using
the optimal Kalman filter [6].

It can be seen from the proposed state space model that condi-
tional on the sources s1:k (which form Tk) and the measurement
noise covariance Σw, equations (7)-(8) for the FIR coefficients
hk form a linear-Gaussian subsystem. Similarly, the pair of equa-
tions (3)-(4) for the AR coefficients ak conditioned on the sources
and the source noise covariance Σv also form a linear-Gaussian
subsystem. The joint posterior distribution for the sources, FIR
and AR coefficients is factorized using Bayes’ rule to exploit this
structure:

p(s1:k,a1:k,h1:k|y1:k) = p(s1:k|y1:k)

p(a1:k|s1:k,y1:k)p(h1:k|s1:k,y1:k)
(11)

The dependence on the noise variances Σv and Σw are not
shown explicitly since maximum a posteriori (MAP) estimates can
be developed separately assuming non-informative inverse Gamma
variance priors:

σ̂2
v,n[k]i =

1
2

∑k

k̃=1(sk̃[n]i − s
(i)T

P,k̃−1,n
ai

k̃,n
)2

k
2

+ 1
, (12)

σ̂2
w,j [k]i =

1
2

∑k

k̃=1(yk̃[j] − s
(i)T

L,k̃
hi

k̃,j
)2

k
2

+ 1
. (13)

The filtered distributions p(ak|s1:k,y1:k) and p(hk|s1:k,y1:k)
are computed recursively in parallel for the decoupled condition-
ally linear-Gaussian problems using the standard Kalman filter:

p(ak|s
i
1:k,y1:k) = N (âi

k|k,Φi
a,k|k), (14)

p(hk|s
i
1:k,y1:k) = N (ĥi

k|k,Φi
h,k|k). (15)

The quantities âk|k,ĥk|k are the filtered means and Φa,k|k,Φh,k|k

are the filtered covariances from the Kalman recursions for the AR
and FIR coefficients.
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The marginalized posterior distribution p(s1:k|y1:k) is obtained
using the Rao-Blackwellisation strategy for marginalizing out the
conditionally linear-Gaussian AR and FIR coefficients. The re-
sulting nonlinear estimation problem for the sources sk is imple-
mented using the particle filter. The development of the SIS method
assumes the state transition model for sk is first-order Markov and
the measurement model is dependent on only the current state. The
state equation (2) and the measurement equation (6) do not satisfy
this requirement in general since they are dependent on P and L
source samples, respectively. To satisfy the requirements of an SIS
implementation, the new state variable sM,k ∈ R

MN×1 is intro-
duced, where M = max(P, L) is the maximum of the orders of
the AR and FIR models. The state transition equation is then:

sM,k = ÃksM,k−1 + ṽk−1, (16)

where, using 0a,b to denote a matrix of zeros of dimension a × b
if a, b > 0 and empty otherwise,

Ãk =

[ [
0(M−1)N,N , I(M−1)N

][
0N,(L−P )N ,Ak

] ]
, (17)

ṽk−1 = [01,(M−1)N ,vT
k−1]

T. (18)

The corresponding measurement equation is:

yk = H̃ksM,k + wk, (19)

where
H̃k = [0J,(P−L)N ,Hk]. (20)

Using this formulation in terms of sM,k, we now develop the
importance function and weight update used in the particle filter
for estimation of the sources. An approximation to the optimal
importance function is used to generate the particles. The optimal
importance function is defined as the function which minimizes
the variance of the true importance weights [9], and is shown to be

q(sM,k|sM,1:k−1,y1:k) ∝ p(yk|sM,k)p(sM,k|sM,k−1). (21)

From the form of (16), only the quantity sk of sM,k is stochastic,
while the remaining blocks are shifted quantities from the previous
state sM,k−1. Thus, it is only required to consider generating par-
ticles for the current source vector sk from an importance density
of the form:

q(sk|sM,1:k−1,y1:k) ∝ p(yk|sM,k)p(sk|sM,k−1), (22)

where p(yk|sM,k) is the marginalized likelihood and p(sk|sM,k−1)
is the marginalized prior. These distributions are determined by
marginalizing over the FIR and AR coefficients, and are found to
be [6]:

p(sk|sM,k−1) = N (Sk−1âk|k−1,Rk), (23)

p(yk|sM,k) = N (Tkĥk|k−1,Qk), (24)

where

Rk = Sk−1Φa,k|k−1S
T
k−1 + Σv, (25)

Qk = TkΦh,k|k−1T
T
k + Σw, (26)

and âk|k−1,ĥk|k−1 are the predicted means and Φa,k|k−1,Φh,k|k−1

are the predicted covariances from the Kalman filter recursions.
Even though the optimal importance function for sk in (22) is the

product of the two Gaussian distributions (23),(24), it is not Gaus-
sian itself since the covariance term Qk has a dependence on the
variable of interest sk (through Tk). In order to derive a Gaussian
importance function that has the necessary feature of being easy to
sample from, the state-dependent covariance Qk is approximated
by Q̂k with sk replaced by its predicted value from the transition
prior:

ŝk|k−1 = Sk−1âk|k−1 (27)

To factorize the two distributions into an equivalent Gaussian dis-
tribution for sk, the variable sk is isolated from the matrix Tk in
the mean of (24) using the equivalent forms of the measurement
equation in (6) and (7):

Tkĥk|k−1 =

L−1∑
�=0

Ĥk|k−1,�sk−�

= Ĥk|k−1,0sk + ŷk|k−1

(28)

where the predicted matrices of FIR coefficients at lag � from
the current time Ĥk|k−1,� are formed from ĥk|k−1, and the pre-
dicted measurement ŷk|k−1 is defined as the summation excluding
Ĥk|k−1,0sk. The resulting importance function is then Gaussian
with mean µo and covariance Σo given by:

µo = ŝk|k−1 + Wk(yk − Ĥk|k−1,0ŝk|k−1 − ŷk|k−1),(29)

Σo = Rk − WkĤk|k−1,0Rk, (30)

which is in the form of a Kalman update on the predicted particles
with gain given by:

Wk = RkĤ
T
k|k−1,0[Ĥk|k−1,0RkĤ

T
k|k−1,0 + Q̂k]−1. (31)

The corresponding weight update from (10) then simplifies to:

wi
k ∝ wi

k−1

p(yk|s
i
M,k)

p̂(yk|si
M,k)

p̂(yk|s
i
M,k−1), (32)

where
p̂(yk|sM,k) = N (Tkĥk|k−1, Q̂k) (33)

The steps of the proposed RBPF algorithm are summarized:

RBPF Algorithm Summary
Generation of Particles: Draw particles from the approximation
to the optimal importance function in (29),(30).
Importance Weight Update: Update the importance weights (32),
and normalize to sum to unity.
Resampling Step: Resample the source particles, and the corre-
sponding Kalman filter means and covariances, and noise variance
MAP estimates using the systematic resampling method [7] when
the approximate effective sample size [8] falls below Np/3.
MCMC Diversity Step: Restore particle diversity by applying a
Metropolis-Hastings (MH) algorithm using the approximation to
the optimal importance function as the proposal distribution.
Kalman filtering for AR,FIR coefficients: Update the filtered (and
predicted) mean and covariance of the distributions (14),(15) for
the pair of conditionally linear-Gaussian systems using the stan-
dard Kalman filter recursions.
MAP estimation for noise variances: Compute the MAP estimates
of the source (12) and measurement (13) noise variances.
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Fig. 2. RBPF source estimation

5. SIMULATION RESULTS

The dynamical state space model was simulated with N = 1
source and J = 2 sensors. The initial P = 4 order AR co-
efficient vector a0 was generated from a low-pass Butterworth
filter with normalized cutoff frequency wn = 0.25. The time-
varying state ak was then generated from the AR model in (4)
using aa = 0.9999 and Σa = 0.001IP . The initial L = 6 or-
der FIR channel vectors h0,j,n were produced from independent
draws from a zero-mean Gaussian distribution with exponentially
decaying covariance matrix using W = 0.15:

Σh,0 = diag
(
[e−

L−1

W L , e−
L−2

W L , . . . , e−
0

W L ]
)

. (34)

The time-varying hk was then generated from (8) using ah =
0.9999 and Σh = (1 − a2

h)Σh,0. The noise variance parame-
ters were σ2

v = 0.01, σ2
w = 0.005. The average signal-to-noise

(SNR) ratio computed numerically over the Monte Carlo runs was
17.3 dB. The number of particles was Np = 50.

The performance is measured using the mean square error (MSE)
averaged over the time steps and Monte Carlo runs:

MSE = 10 log10

(
1

Nt

Nt∑
t=1

(
1

K

K∑
k=1

‖st
k − ŝt

k‖
2
2

N

))
, (35)

where st
k is the true source from the tth Monte Carlo trial, ŝt

k is
the minimum mean square error (MMSE) estimate, Nt = 50 is
the number of Monte Carlo simulations, K = 500 is the number
of time steps, and N is the dimension of the state sk. Performance
measures for the MMSE estimates of hk, ak, σ2

v , and σ2
w also

follow the form of (35). The MSE values are shown in Table 1.

Table 1. MSE simulation results
Variable sk hk ak σ2

v σ2
w

MSE -23.08 -15.83 -12.09 -46.31 -72.40

Figure 2 compares the true source with the MMSE estimate
from one Monte Carlo run. The learning curves of MSE(k)
(computed without averaging over time) are presented in Figure
3, for the AR/FIR coefficients and noise variances.

In conclusion, an efficient Rao-Blackwellised particle filter-
ing algorithm has been presented to directly recover the source for
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Fig. 3. MSE learning curves

the blind system identification problem. Simulation results have
shown the effectiveness of the method.
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