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Abstract— We consider the problem of MIMO channel estimation
subject to a given error and delay constraints. Our objective is to
minimize the energy spent during the channel estimation phase, which
includes transmission of training symbols, storage of those symbols at
the receiver, and also channel estimation at the receiver. We develop a
model that is independent of the hardware or software used for channel
estimation, and use a divide and conquer strategy to minimize the overall
energy consumption.

I. INTRODUCTION

The use of multiple input multiple output (MIMO) channels
formed using multiple transmit/receive antennas has been demon-
strated to have great potential for achieving high data rates [7].
Of concern, however, is the increased complexity associated with
multiple transmit/receive antenna systems. First, increased hardware
cost is required to implement multiple RF chains. Second, increased
complexity and energy is required to estimate large size MIMO
channels.

Energy conservation in MIMO systems has been considered in
different perspectives. In [2] for instance, hardware level optimization
is done to minimize energy. On the other hand, in [4],[5], energy
consumption is minimized at the receiver by using low rank equal-
ization. In [3] reducing the order of MIMO systems by selection of
antennae is given as a viable option to minimize energy consumption
both at the receiver and transmitter, without degrading the system
performance. In [6] the transmission and circuit energy consumption
per bit of information transmitted is analyzed. The authors claim in
[6] that single input single output (SISO) (1× 1) systems gives best
performance over MIMO (2×2) systems for short range transmission.

In this paper we focus on MIMO channel estimation subject to
delay and error constraints. We propose an antenna selection scheme
for channel estimation that can minimize energy consumed both at
the transmitter and the receiver.

We can summarize the novelty of the proposed scheme as follows.
(i) we concentrate exclusively on the channel estimation phase unlike
in [6] where the authors have considered the data transmission phase;
(ii) we propose an antenna selection scheme to minimize energy
during channel estimation unlike [3] where information theoretic
performance during data transmission is considered for antenna
selection; (iii) the proposed method can be applied independent
of the hardware or software used for channel estimation. In fact,
the hardware and software can be optimized independently of the
proposed method as in [2].

The rest of the paper is organized as follows. In the next section we
describe the generalized energy reduction scheme. After this we focus
on minimizing energy at the transmitter and the receiver separately.
Next we consider joint transmitter and receiver energy minimization.
To illustrate our method we consider a scalar MIMO system of
arbitrary size and give comparisons of energy and error variation
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for different channel estimation schemes obtained by varying the
number of active transmit/receive antennas under a fixed delay and
error constraint.

II. GENERAL METHODOLOGY

In this section we describe the proposed method in a general sense.
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Fig. 1. MIMO channel

The fundamental property that we assume in our scheme is the
modularity of hardware. For instance, when a complex hardware
system is built, it is done in a modular way by assembling less
complex blocks. Hence, a MIMO system can be considered as a
collection of SISO systems, with respect to hardware. For instance,
we assume a 4 by 4 MIMO system can operate as a 2 by 2 system
by turning off some modules.

Let us consider a MIMO system with M transmitters and N
receivers as given in Fig. 1. We call the set of transmitters T and
the set of receivers R. Their cardinalities, |T| and |R|, are M
and N respectively. The objective is to estimate the channels hij ,
0 ≤ i ≤ N − 1, 0 ≤ j ≤ M − 1 in an energy efficient manner. The
channel estimation requires the consumption of energy and time.

We make the following assumptions:

A1 We can ignore electromagnetic interaction between antenna
elements. Thus, if we estimate hij by having active only a
subset of transmitters/receivers, the estimate will be the same
as the estimate we would get for the same channel if all
transmitters/receivers were active.

A2 The channels are frequency flat fading and during the training
phase, the channels remain time invariant.

We propose the following divide and conquer strategy. Instead of
estimating all M by N channels at once, we estimate subsets of
channels step by step. This seemingly gives an obvious reduction
in complexity at the receiver. For instance, if we estimate all the
channels at once, the complexity is O(NM2), (inversion of an N by
M matrix is approximately O(NM2)) assuming a matrix inversion
is required. However, if we use only half the transmitters M/2
and all receivers N with two steps, the complexity is 2O(NM2/4)
which cuts the complexity by half. However, such reduction does not
consider the energy required for transmission and data acquisition
and so we need more detailed models.
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Instead of estimating the full channel matrix at once (which we
call the naive method), we propose to estimate the full channel matrix
in K steps. On the k-th step, (k ∈ [1, K]) we select the transmitters
given by the set Tk (⊆ T) and the receivers given by the set Rk

(⊆ R) and estimate the channels between those transmitters and
receivers. Let Pk be the power level of each transmitter at the k-
th step, and lk denote the length of training data to be used in
channel estimation. Moreover, let the noise power level at the receiver
be σ2. Hence, at the k-th step, the average SNR at the receiver
will be proportional to Pk/σ2. We assume all transmitters have the
same fading level, i.e., each transmitter is approximately at the same
distance from the receiver and the channel is flat fading.

We will focus on minimizing the total energy consumption, both
at the receiver and transmitter. We define the following functions. Let
gT be the energy spent by all the transmitters. At the receivers, the
energy consumption can be broken down into two components: the
energy required to perform data acquisition and storage, which we
denote by gI , and the energy needed to perform channel estimation
or computations, which we denote by gC . In our formulation, gT ,
gI , and gC are functions of the variables K, Tk, Rk, lk, Pk k =
1, . . . , K . For notational convenience, this dependence in not shown
in the sequel.

The total energy consumed can be given as

g = gT + gI + gC . (1)

Our objective is to minimize g. Next we consider the constraints
involved.

• Avoiding trivial solutions: In order to estimate all the channels
we need [

k=1,...,K

Tk ⊗ Rk = T ⊗ R (2)

where ⊗ is the Cartesian product. In order to avoid trivial
solutions we need

Tk �= φ, Rk �= φ, k ∈ [1, K] (3)

where φ is the null set.
• Satisfying a channel MSE constraint: For acceptable perfor-

mance, the mean channel estimation error (MSE) at each step
εk should be below a minimum threshold,

εk = εk(Tk,Rk, Pk, lk) ≤ ε, k ∈ [1, K]. (4)

The exact expression for εk is dependent on the channel esti-
mation method. If we consider the power level at each step,
it should be higher than some threshold Pk for the channel
estimation to work, and it should be lower than the maximum
allowed by the transmitter P .

Pk ≤ Pk ≤ P, k ∈ [1, K] (5)

• Satisfying a transmission delay constraint: The training length
at step k should be above a certain threshold lk for the channel
estimation to work and the total data length would be below the
maximum delay allowed L.

lk ≤ lk, k ∈ [1, K],

KX
k=1

lk ≤ L (6)

Our objective is to find Tk,Rk,Pk and lk for k = 1, . . . , K subject
to the above constraints (2), (3), (4), (5), (6), that minimizes g given
in (1). This is an NP hard problem. However, we pursue simplified
solutions in the following sections.

Before we proceed, let us consider the feasibility of the problem.
We see that all the parameters are bounded. Hence the feasibility
region is bounded and in order to find feasible solutions, we should
choose the limits ε and L in a suitable manner. For instance if
we choose ε = 0 or L = 0 it is obvious that no solutions exist.
Hence by increasing either or both of these values, we can increase
the feasibility region. In other words, we can trade off energy with
channel estimation error and delay.

III. MINIMIZING ENERGY AT THE TRANSMITTER

We make the following assumptions:
B1 We assume the receiver has no constraints on energy because

we only minimize energy at the transmitter. This allows us to
always make Rk = R. In other words, we use all receivers at
all steps.

B2 We assume the antennas to be uncorrelated, so that the channel
estimate will not change with the selection of Tk and Rk.
Moreover, we assume the only variable affecting the channel
estimation error to be the sizes of Tk and Rk and not the
individual elements in them.

B3 We assume retransmissions to be costly and hence select disjoint
sets of transmitters, i.e. Tk are disjoint. In other words each
transmitter only transmit during only one step k.

Proposition 1: The channel estimation error at the k-th step

εk = c1
σ2

Pklk
|Tk| (7)

where σ2 is the noise variance, c1 is a constant.
The proof is given in Appendix I.

The total energy spent by all the transmitters can be given as

gT =

KX
k=1

c2Pklk|Tk| (8)

where c2 is a constant. Due to Rk = R, and Tk being disjoint, we
can simplify (2) as

KX
k=0

|Tk| = |T| = M. (9)

This is a standard integer partition problem. For instance if M = 4
the ways we can select the number of transmitters during the K steps
are {4}(K = 1),{3, 1}(K = 2),{2, 2}(K = 2),{2, 1, 1}(K = 3) and
{1, 1, 1, 1}(K = 4). Thus there are 5 possible ways in this case. If
the number of possible ways of selecting |Tk| is p(M) for |T| = M ,
we have [1]

p(M) ≈ 1

4
√

3

„
eπ
√

(2/3)M

M

«
. (10)

For small values of M , i.e. M ≤ 10, we can try all possible
partitions to find the best one. Once we have enumerated Tk the
problem reduces to

min
Pi,li,i∈[1,K]

KX
k=1

c2Pklk|Tk| (11)

subject to (4), (5), (6), where Tk, Rk and K are constants.
Proposition 2: Under assumptions A1-A2 and B1-B3, the channel

estimation scheme that minimizes transmitter energy is to reduce the
MIMO channel into a set of single input multiple output (SIMO)
channels and transmit using one transmitter only at a time. Thus
each time we estimate a SIMO channel. The minimum energy is

g = c1c2
σ2

ε
M (12)
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as opposed to the energy of the naive method

g = c1c2
σ2

ε
M2 (13)

The proof is given in appendix II.
This result agrees with intuition since in this case there is reduced

interference from other transmitters. However under different assump-
tions and different channel estimation schemes, we might get different
results.

IV. MINIMIZING ENERGY AT THE RECEIVER

In contrast to the transmitter, the energy consumption at the
receiver is due to data acquisition and computation. From Appendix
I we see that the computational energy required will be

gC,k = c3|Tk||Rk|l2k (14)

where c3 is a constant. The energy required for data acquisition and
storage will be proportional to the data length. Hence

gI,k = c4|Rk|lk (15)

where c4 is a constant and the total energy will be

gT =
KX

k=1

c3|Tk||Rk|l2k + c4|Rk|lk (16)

Our objective is to minimize gT subject to the (4), (5), (6) constraints.
Proposition 3: Under assumptions A1-A2 and B2, the channel

estimation scheme that minimizes the energy consumption at the
receiver is to estimate each SIMO channel individually by using one
transmitter and all receivers at each step. The minimum energy is

g = NM

„
c3c

2
1

σ4

P 2ε2
+ c4c1

σ2

Pε

«
(17)

as opposed the the energy of the naive method

g = NM

„
c3c

2
1

σ4

P 2ε2
M2 + c4c1

σ2

Pε

«
(18)

The proof is given in Appendix III.

V. MINIMIZING ENERGY BOTH AT THE TRANSMITTER AND

RECEIVER

From Propositions 2 and 3 we can conclude that the optimal
scheme of channel estimation for a MIMO system that minimize
both transmitter and receiver energy consumption is to reduce the
system into a set of SIMO channels and estimate each SIMO channel
individually. In other words, instead of transmitting the training
symbols from all transmitters simultaneously, we have to transmit
them in a sequential manner by activating only one transmitter at a
time. In order to satisfy the delay requirement, each transmitter will
be active only for a fraction of the time it would have been active if
all transmitters were transmitting simultaneously.

VI. NUMERICAL EXAMPLE

We considered an 8×8 system with SNR 20 dB. In Fig. 3 we show
results of 4 possible schemes for channel estimation. Our constraints
are, maximum error ε = 10−3 and delay L = 56. In scheme 1,
we used 56 symbols per each transmitter (total 448) and employed
the naive method to estimate the 8 × 8 system. In scheme 2 we
used Proposition 2 and used 7 symbols per each transmitter (total
56) to estimate the 8 × 1 SIMO systems (8 times). In scheme 3
we transmitted 7 symbols from each transmitter (total 56) and again
used the naive method. Finally in scheme 4 we used 14 symbols per
each transmitter but reduced the system into 4, 8 × 2 systems (total
112) to estimate the channel in 4 steps. We see that scheme 1 has

the lowest error but highest energy consumption. Scheme 3 has the
lowest energy consumption and lowest delay, but the channel cannot
be estimated because the training matrix does not have full row rank.
Schemes 2 and 4 have intermediate performance in terms of error
and energy, and we see that a trade off can be accomplished between
error and energy. Although in this example schemes 2 and 4 have
higher channel estimation error, the final conclusion can be drawn
only after numerical evaluation of the performance in terms of the
bit error rate. The constants P , c1,c2,c3,c4 can be calculated given
the hardware or can be experimentally measured.

VII. CONCLUSIONS

Using a generic model for channel estimation error and energy
consumption of a MIMO system, we have shown that the optimal
channel estimation scheme in terms of minimizing energy consump-
tion is to convert the MIMO system into a set of SIMO channels
by activating each transmitter individually and performing channel
estimation on each SIMO system. However, the energy reduction
comes at an increase in estimation error. In our formulation, we have
assumed a homogeneous, isotropic, uncorrelated set of transmitters
and receivers. There is room in this area for future work on adapting
this method to a MIMO channel formed by a disparate set of
transmitters and receivers with different power, computation and
storage capabilities and different radiation patterns.

APPENDIX I
CHANNEL ESTIMATION ERROR AND ENERGY

In this section we consider a MIMO system with frequency flat
fading channels. We consider the least squares channel estimation
using training symbols with all transmitters and receivers active (we
call this the naive method). The basic equation can be given as y =
Hx+v where y is a N by 1 vector, H is the N by M channel matrix,
x is the M by 1 training vector and v is the N by 1 noise vector. Let
us use J training blocks to estimate the channel. Grouping J blocks
we have Y = HX+V where Y = [y1, . . . ,yJ ], X = [x1, . . . ,xJ ]
and V = [v1, . . . ,vJ ]. For full rank condition of X we need J ≥ N .
The channel estimation error is

ξ = Ĥ − H = VX
† (19)

and the MSE

MSE =
1

NM
trace(ξξ

H) =
1

NM
trace((XH

X)†VH
V) (20)

We consider X having orthogonal rows and full row rank. Then
XXH = I. However, since J > N there is no way to choose all
columns orthogonally. Hence XHX will not be diagonal. Similarly,
VHV will not be diagonal if J > M . If we consider any generic
channel estimation scheme, we know that the channel estimation
error is inversely proportional to the SNR and the data length while
it is directly proportional to the interference i.e. the number of
transmitters. Hence we formulate the error as

MSE = cσ2 M

JP
(21)

where σ2 is the noise power, P is the signal power and c is a
constant. In order to verify above formulation, we have simulated
random channels and have given the result in Fig. 2. By substituting
J = lk, P = Pk, M = |Tk| we get (7).

Next we calculate the total number of computations required.
If the rows of X are not orthogonal, the computation of the
psuedoinverse X† requires approximately O(MJ2) operations. The
multiplication YX† requires O(MNJ2) operations. Altogether we
have an O(MNJ2) computation assuming X† = XH .
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APPENDIX II
PROOF OF PROPOSITION 2

The Lagrangian (ignoring the lower bounds for Pk and lk) is

L =
KX

k=1

c2Pklk|Tk| +
KX

k=1

λ1,k(c1
σ2

Pklk
|Tk| − ε) (22)

+
KX

k=1

λ2,k(Pk − P ) + λ3(
KX

k=1

lk − L)

where λ1,k,λ2,k,λ3 are the multipliers. For optimality we need

∂L
∂lk

= c2Pk|Tk| − λ1,kc1
σ2

Pkl2k
|Tk| + λ3 = 0 (23)

and
∂L
∂Pk

= c2lk|Tk| − λ1,kc1
σ2

P 2
k lk

|Tk| + λ2,k = 0 (24)

We select a solution as follows. From (5), we select Pk = P . From
(4) and (7) we select

lk = c1
σ2

Pε
|Tk| (25)

If Tk = T, |Tk| = M and from (6) we need

l1 = L ≥ c1
σ2

Pε
M (26)

Hence
KX

k=1

lk = c1
σ2

Pε

KX
k=1

|Tk| = c1
σ2

Pε
M ≤ L (27)

and we see that by selecting lk according to (25), (6) is automatically
satisfied. Hence we have a feasible solution. Next we check its
optimality. Since (6) is satisfied and active, we have λ3 > 0. From
(23) we have

λ1,k = (λ3 + c2P |Tk|) Pl2k
c1σ2|Tk| (28)

which is positive. Next from (24) we have λ2,k = λ3
lk
P

which is
again positive. Hence the solution is optimal. By substitution of P =
Pk and (25) in (8), we get (29). The minimum transmitter energy
given the partition of T is

gT = c1c2
σ2

ε

KX
k=1

|Tk|2 (29)

Thus we see that the partition that minimizes (29) consists of
all ones, i.e. {1, 1, . . . , 1}. In other words, in order to minimize
transmission energy, we should estimate channels selecting each
transmitter individually. Substituting |Tk| = 1 into (29) we get (12)
and substituting K = 1,|Tk| = M ,and (26) we get (13). �

APPENDIX III
PROOF OF PROPOSITION 3

Note that there is no transmitter power term Pk in (16) and we
can select Pk = P . Next we select the data length as in (25). By
substitution into (16) we have

g =
KX

k=1

c3c
2
1

σ4

P 2ε2
|Tk|3|Rk| + c4c1

σ2

Pε
|Tk||Rk| (30)

and the only constraint (6) reduces (using (26)) to

KX
k=1

c1
σ2

Pε
|Tk| ≤ L, or

KX
k=1

|Tk| ≤ M. (31)

Minimizing (30) subject to (31) is a standard discrete programming
problem. It is easy to see that in order to satisfy (31) we need to
partition the transmitters disjointly. In that case, the partition that
minimizes (30) is |Tk| = 1 for all k. In this case, we need to
use all the receivers and the only possible partition for Rk is R.
Hence we can conclude that the channel estimation scheme that
minimizes receiver energy consumption is to estimate each SIMO
channel individually. Substituting |Tk| = 1 into (30) we get (17)
and substituting K = 1,|Tk| = M ,and (26) we get (18). �
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Fig. 2. MSE variation with N , M and J . We see that the MSE is independent
of N , has a linear variation with M and is inversely proportional to J .

Scheme MSE/10−3 Energy
1 0.2 c2P448 + c3(448)2 + c4448

2 1.0 c2P56 + c3(56)2 + c4448

3 ∞ c2P56 + c3(56)2 + c456

4 0.8 c2P112 + c3(112)2 + c4448

Fig. 3. MSE and Energy for different channel estimation schemes for 50,
random 8 by 8 channels .
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