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ABSTRACT

The expectation maximization (EM) algorithm combined
with the Kalman filter (KF) can be applied iteratively to
yield state estimates and ML estimates of the parameters
of a linear dynamical system. In this paper new recursive
forms of the accumulated second-order state moments which
constitute the core of the joint state and parameter estimator
are derived. The new recursions are in vector form and fol-
low directly from the state smoothing formula as well as the
properties of the Kronecker product. By loosening the op-
timal constraints, the new recursion forms lead to efficient
suboptimal algorithms that are time-recursive. Convergence
control of these recursive algorithms by exponential weight-
ing is also considered.

1. INTRODUCTION

State estimation in linear dynamical systems with unknown
parameters is a problem of practical interest in numerous
applications. In many cases the parameters of the dynamic
model for a real system are not known exactly and need
to be estimated. In [1], an EM algorithm combined with
the Kalman state smoother was proposed to compute the
ML estimates of the system parameters while also provid-
ing the state estimates. Later in [2] the idea was applied to
the problem of speech enhancement where the authors also
suggested a suboptimal sequential algorithm in which the
state smoother is replaced by a filter. In all these cases the
parameter estimator is based on sums of the second-order
state moments which must be computed individually (and in
a forward-backward scheme when a state smoother is used)
and stored. Recently in [3], a class of finite-dimensional
filters were proposed to directly estimate the sums of those
second-order state moments, instead of estimating the mo-
ments first and then accumulating. This greatly reduces the
storage requirement and is computationally more efficient.
The derivation was based on the notion of measure change.
In [4], the same filters were employed in a suboptimal recur-
sive algorithm whose convergencewas proved under certain
conditions. However, the recursion forms proposed in [3]

have to be implemented element-wise for the accumulated
moments, and the suboptimal algorithm of [4] can have a
very slow convergence rate under certain conditions. A new
vector form recursion scheme is presented in this paper. The
derivation is based on the state smoothing formula and the
properties of the Kronecker product, and is mathematically
simpler than that in [3]. The new recursion forms also yield
new insight into the stability of the recursions and motivates
suboptimal recursive algorithms.

The paper is organized as follows: section 2 formulates
the problem and reviews the EM algorithm; in section 3 the
new recursion forms of the accumulated moments are de-
rived. Section 4 presents two suboptimal algorithms. Nu-
merical results are presented in section 5 and finally a con-
clusion follows in section 6.

Throughout the paper, the following notation is used:
superscripts ∗, T and h stand for complex conjugate, trans-
pose and Hermitian, respectively. I and 0 denote identity
matrices and zero matrices (or vectors) of appropriate size.
V ec

(
A

)
denotes the vector obtained by stacking all columns

of the matrix A, and Mat
(
·
)

the inverse operator of V ec.
⊗ denotes the Kronecker product.

2. PROBLEM FORMULATION

Consider the following state-space model:

xk+1 = A(θ)xk + wk (1a)

yk = ckxk + vk (1b)

where xk ∈ CM denotes the state process. The state tran-
sition matrix A(θ) ∈ CM×M is parameterized by the un-
known set θ. yk is the scalar observation. Both wk and vk

are zero-mean Gaussian white processes, with covariances
Qw and σ2

v , respectively. They are mutually and serially
independent, and independent from x0.

The goal is to estimate the state process xn based on the
observation sequenceYn = {y1, · · · , yn} assuming ck, k =
1, · · · , n are known. The parameter set θ also needs to be
estimated. Therefore it may be viewed as a problem of joint
state and parameter estimation.
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According to [1] (and [5] for details on EM), given Yn,
at the lth iteration the EM parameter estimation yields

θ̂(l)
n = arg min

θ
J(θ) (2a)

J(θ) �E

{ n∑
i=1

‖xi − A(θ)xi−1‖
2
Q−1

w

∣∣∣∣Yn; θ̂(l−1)
n

}
(2b)

As a generalization that will become useful later, let

Jλ(θ) � E

{ n∑
i=1

λn−i ‖xi − A(θ)xi−1‖
2
Q−1

w

∣∣∣∣Yn; θ̂(l−1)
n

}
(3)

where 0 < λ ≤ 1. Then Jλ(θ) = J(θ) when λ = 1.
Consider the case θ = V ec

(
A

)
. Solving ∂Jλ(θ)/∂θ =

0 yields
Â(l)

n = Ĥ
(l−1)
1 [n]

[
Ĥ

(l−1)
0 [n]

]−1
(4)

where it can be shown that

Ĥ
(l−1)
0 [n] � E

{ n∑
i=1

λn−ixi−1x
h
i−1

∣∣∣∣Yn; Â(l−1)
n

}

=

n∑
i=1

λn−i
[
x̂

(l−1)
i−1|n

(
x̂

(l−1)
i−1|n

)h
+ P

(l−1)
i−1|n

]
(5a)

Ĥ
(l−1)
1 [n] � E

{ n∑
i=1

λn−ixix
h
i−1

∣∣∣∣Yn; Â(l−1)
n

}

=

n∑
i=1

λn−i
[
x̂

(l−1)
i|n

(
x̂

(l−1)
i−1|n

)h
+ P

(l−1)
i|n

(
J

(l−1)
s,i

)h]
(5b)

(5a) -(5b) will be called the filtered estimate of the accu-
mulated state moments with lag j = 0 and 1, respectively.
Here x̂

(l−1)
i|n and P

(l−1)
i|n are the smoothed state estimate and

the error covariance, respectively. In addition,

J
(l−1)
s,i � P

(l−1)
i−1|i−1

(
Â(l−1)

n

)H(
P

(l−1)
i|i−1

)−1
(6a)

=
(
Â(l−1)

n

)−1[
I − Qw

(
P

(l−1)
i|i−1

)−1]
(6b)

with P
(l−1)
i−1|i−1 and P

(l−1)
i|i−1 being the error covariance matri-

ces of the filtered and predicted state estimates, respectively.
J

(l−1)
s,i is the closed-loop state matrix of the smoothed esti-

mator [6]. Here the n dependencies in J
(l−1)
s,i , P

(l−1)
i−1|i−1

and P
(l−1)
i|i−1 have all been dropped for notational simplicity.

Intuitively, (4)-(5b) may be viewed as estimating A from
observations x̂i|n of which the uncertainty is accounted for
by the second terms in (5a) and (5b).

The algorithm proposed in [1] alternates between (4)-
(6) and the Kalman state smoother, and iteratively it yields
parameter and state estimates. The problem is that it re-
quires increasingly large storage space. In the next section
a new recursive algorithm is derived that updates Ĥ

(l−1)
i [n]

directly in vector form.

3. RECURSION OF THE ACCUMULATED STATE
MOMENTS

The basic idea of the new recursion scheme is to compute
Ĥ

(l−1)
j [n] directly, which is similar to that of [3]. How-

ever, unlike in [3] where the algorithm is derived via mea-
sure changes and updates Ĥ

(l−1)
j [n] elementwise, the new

recursion here is in vector form and follows directly from
the state smoothing formula and the properties of the Kro-
necker product. For notational simplicity, in this section the
iteration index (l) is dropped.

Note the following fixed-point smoothing formulas ([6]):{
x̂i|n = x̂i|n−1 + Pi,nch

nR−1
en

en

Pi|n = Pi|n−1 − Pi,nch
nR−1

en
cnPh

i,n
(7)

where n ≥ i; en, Ren
are the innovation and its variance;

Pi,n = E
[
x̃i|i−1x̃

h
n|n−1

]
is the cross error covariance, and

Pi,n = Pi|i−1

[
Fp,n−1Fp,n−2 · · ·Fp,i

]h
(8a)

Fp,i = Ân

[
I − Pi|i−1c

h
i R−1

ei
ci

]
(8b)

for n > i. Ân is the latest estimate of A; Fp,i is the transi-
tion matrix of the one-step state prediction. From (6) it can
be shown

Js,i+1 = Pi|i−1F
h
p,iP

−1
i+1|i (9)

Combining (9) with (8a), for i < n it follows

Pi,n =
[
Πn−1

j=i Js,j+1

]
Pn|n−1 � Ti,nPn|n−1 (10)

where Ti,n is clear from the second equality.
Taking V ec on both (5a) and (5b), using (7) as well as

the following identities [7]:

V ec
(
ABC

)
=

(
CT ⊗ A

)
V ec

(
B

)
(11)(

AB
)
⊗

(
CD

)
=

(
A⊗ C

)(
B ⊗ D

)
(12)

it yields the following recursions

V ec
(
Ĥ1[n]

)
= λ

[
V ec

(
Ĥ1[n − 1]

)
+ Ω1,nV ec

(
Mn

)
+ Υ1,nN∗

n + Γ1,nNn

]
+ V ec

[
x̂n|nx̂h

n−1|n + Pn|nJh
s,n

]
(13a)

V ec
(
Ĥ0[n]

)
= λ

[
V ec

(
Ĥ0[n − 1]

)
+ Ω0,nV ec

(
Mn

)
+ V ec

[
Mat

(
Γ0,nNn

)]h
+ Γ0,nNn

]
+ V ec

[
x̂n−1|nx̂h

n−1|n + Pn−1|n

]
(13b)

where x̂n−1|n and Pn−1|n are computed from x̂n−1|n−1

and Pn−1|n−1 according to (7). In addition, for j = 0, 1.

Mn �Pn|n−1c
h
n

[
R−1

en
eneh

nR−1
en

− R−1
en

]
cnPn|n−1 (14a)

Nn �Pn|n−1c
h
nR−1

en
en (14b)

Ωj,n � Σn−1
i=1 λn−1−iT∗

i−1,n ⊗ Ti−1+j,n (14c)

Γj,n � Σn−1
i=1 λn−1−ix̂∗

i−1|n−1 ⊗ Ti−1+j,n (14d)

Υj,n � Σn−1
i=1 λn−1−iT∗

i−1,n ⊗ x̂i−1+j|n−1 (14e)
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with (14c)-(14e) recursively computed as follows(j = 0, 1):

⎡
⎣ΩT

j,n+1

ΓT
j,n+1

ΥT
j,n+1

⎤
⎦ = λ

⎡
⎣ GT

n+1 0 0

NJT
n+1 JT

s,n+1 0

JNT
n+1 0 Jh

s,n+1

⎤
⎦

⎡
⎣ΩT

j,n

ΓT
j,n

ΥT
j,n

⎤
⎦

+

⎡
⎣GT

n+1 0 0

0 JT
s,n+1 0

0 0 Jh
s,n+1

⎤
⎦

⎡
⎣ Jh

s,n ⊗ LT
j,n

x̂h
n−1|n ⊗ LT

j,n

Jh
s,n ⊗ x̂T

n−1+j|n

⎤
⎦ (15)

where L0,n = Js,n, L1,n = I. And Gn+1 = J∗
s,n+1 ⊗

Js,n+1, NJn+1 = N∗
n ⊗ Js,n+1, JNn=1 = J∗

s,n+1 ⊗ Nn.
The proof is quite straightforward by repeatedly applying
(12) hence is not included here. Note that (13) and (15) can
be arranged such that the update at time n only needs en,
Ren

, x̂n|n−1,x̂n−1|n−1, Pn|n−1, Pn|n, all obtainable from
the one-step KF update.

Equation (15) has a block lower tridiagonal transition
matrix hence it is stable if and only if all the eigenvalues of
λJs,n+1 are inside the unit circle. For λ = 1 this is equiv-

alent to saying that the KF assuming A = Â
(l−1)
n is stable

(equivalently
(
Â

(l−1)
n ,Q

1/2
w

)
and

(
Â

(l−1)
n , c[n]

)
are com-

pletely stabilisable and completely detectable, respectively).
This follows from the fact that the KF state estimates admit
the following recursion(
P−1

n|nx̂n|n

)
= Jh

s,n

(
P−1

n−1|n−1x̂n−1|n−1

)
+ ch

n−1Q
−1
v yn

(16)
which is stable iff all the eigenvalues of Js,n are inside the
unit circle. To summarize, we have the following theorem:

Theorem 1 Consider the linear dynamical system (1),
suppose Kalman Filter assuming A = Â

(l−1)
n is applied to

the system and at time n generates x̂n|n−1, x̂n|n, Pn|n−1,
Pn|n, en, Ren

, then the accumulated second-order state

moments, Ĥ(l−1)
0 [n] and Ĥ

(l−1)
1 [n], both defined in (5), can

be updated recursively according to (13) and (15). Further-
more, that

(
Â

(l−1)
n ,Q

1/2
w

)
is completely stabilisable and(

Â
(l−1)
n , cn

)
is completely detectable is the sufficient (also

necessary if λ = 1) condition for (15) to be exponentially
stable. The discussion prior to the theorem has essentially
established the proof.

The overall EM algorithm is outlined as follows: Con-
sider at time n when the data Yn are available,
1. At the lth iteration, let A = Â

(l−1)
n .

2. for t = 1, · · · , n, applying Kalman Filter to get x̂t|t−1,

x̂t|t, Pt|t−1, Pt|t, et, Ret
, and computing Ĥ

(l−1)
1 [t] and

Ĥ
(l−1)
0 [t] using (13) and (15);

3. Let Â(l)
n = Ĥ

(l−1)
1 [n]

[
Ĥ

(l−1)
0 [n]

]−1
;

4. Let l ← l + 1, repeat steps 1-3 until Â(l)
n converges.

When the next observation becomes available, let Â(1)
n+1 =

Â
(l)
n , and repeat the iteration above.
The main advantage of the recursion scheme (13) and

(15) is that it can lead to time-recursive suboptimal algo-
rithms as discussed in the next section.

4. SUBOPTIMAL ALGORITHMS

The EM algorithm involves multiple iterations and in each
iteration Ĥ

(l−1)
j [n], for j = 0, 1, must be recursively com-

puted all the way from Ĥ
(l−1)
j [1] using the latest parameter

estimate. For most online applications this is not feasible.
In this section two suboptimal recursive algorithms are pro-
posed based on the following modifications of (3) and (5):
A. Algorithm subem I: (for j = 0, 1)

Jλ(θ) � Σn
i=1λ

n−iE
{
‖xi − A(θ)xi−1‖

2
Q−1

w

∣∣Yn; θ̂i−1

}
(17)

Ĥj[n] � Σn
i=1λ

n−iE
{
xi−1+jx

h
i−1

∣∣Yn; Âi−1

}
(18)

B. Algorithm subem II: (17)-(18) with Yn replaced by Yi.
Both algorithms are non-iterative and involve only one-

step update of Ĥj [n]. subem I still uses the recursions (13)
and (15), but only runs one step from n− 1 to n. Algorithm
subem II admits even simpler recursions (for j = 0, 1):

Ĥj [n] = λĤj [n − 1] + E
{
xn−1+jx

h
n−1

∣∣Yn; Ân−1

}
(19)

where Ĥj [n − 1] is not updated by the newest observation
and the latest parameter estimate. In both cases, the follow-
ing recursion holds for Ân:

Ân = Ân−1 +
(
L1[n] − Ân−1L0[n]

)
Ĥ−1

0 [n] (20)

where Li[n] � Ĥi[n] − λĤi[n − 1], i = 0, 1.
The algorithm of [4] is a special case of subem I with

λ = 1, aided with a stable projection of Ân. In [2], expo-
nential weighting was introduced in a suboptimal algorithm
to deal with parameter variation. In fact, the role of λ is
two-fold. In addition to tracking variable parameters, it can
also accelerate the convergence of both algorithms when the
parameter is constant, at the price of a higher steady state
estimation error. This is demonstrated in the next section.

5. NUMERICAL RESULTS

This section presents a numerical example of estimation of
state-space model with unknown parameters. Algorithms
subem I, II are compared with the exponentially weighted
recursive least squares (EWRLS) algorithm, the extended
Kalman filter (EKF) and the Kalman filter. The data was
generated according to model (1) such that A is a 6×6 diag-
onal matrix with complex diagonal elements all close to the
unit circle.The process noise had a unit variance. ck were
derived from a Gaussian pseudo-random sequence gk such
that ck = 1 if gk ≥ 0 and −1 otherwise. The observation
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noise variance was then determined by the SNR values. The
EWRLS had a forgetting factor .99. The EKF jointly esti-
mated the states and the parameters. The Kalman filter, as a
benchmark, knew the true value of A. subem I and II both
took variable values of λ at different SNRs in order to keep
the convergence time nearly the same. Figure 1(a) plots the
normalized steady-state mean squared prediction error vs.
SNR. It shows that both subem I, II out-perform the EKF
in the lower SNR region and out-perform the EWRLS in
the high SNR region . This is because the state trajectory
is nearly circular at the chosen values of A hence the EKF
has a very slow convergence rate at the low SNR region.
For the EWRLS, at the high SNR region its error is domi-
nated by the tracking error caused by the mismatch between
the assumed and the true state dynamics which cannot be
improved substantially by increasing SNR.

The convergence of parameter estimation using subem
I, II is also studied. The data was generated as above with
SNR = 3dB. Figure 1(b) plots, for λ = 1, .98, .96 re-
spectively, the transient parameter MSE for both algorithms,
averaged over 60 points. At λ = 1 neither algorithm con-
verged within the observation duration (the two flat lines
in Figure 1(b)). At λ = .98 and .96 both algorithms con-
verged, with faster rate but higher steady-state MSE at λ =
.96. With a same λ, subem I converges faster than subem
II, but has a higher steady-state parameter MSE. Numeri-
cal analysis suggests that the minimum eigenvalue of Ĥ0

is smaller in subem I than in subem II which in turn leads
to larger adapting gain in (20) for subem I. Intuitively, the
larger gain results in a shorter averagingwindow which yields
faster convergence but a higher steady-state error.

6. CONCLUSION

New recursive forms of updating the accumulated state mo-
ments are derived which can be used in the EM algorithm
for joint state and parameter estimation.The new scheme
also motivates two suboptimal algorithms which, as numer-
ical results have shown, out-perform the EWRLS and the
EKF algorithms. The impact of the exponential weight-
ing on the convergence of these algorithms are also demon-
strated numerically.
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