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ABSTRACT 

In this paper we propose a Bayesian approach in 

estimating the parameters and predicting future values of 

generalized long-memory process utilizing the 

approximate likelihood function of discrete wavelet packet 

coefficients. This approximation does not depend on the 

length of the signal, but the length of the wavelet filter, 

which is under the control of the analyst. We illustrate our 

approach by an example applying simulated data.  

1. INTRODUCTION 

A digital random signal has long-memory if its 

autocorrelations decay to zero slowly at a hyperbolic rate. 

Reference [1] defines a long-memory process as a 

stationary signal for which the autocorrelation satisfies 

( ) 12 −*dCk~kρ as ∞→k , where 0>C and 0< 50.*d < .

In this case, the autocorrelations decay to zero slowly at a 

hyperbolic rate and ∞=∑ )k(ρ . This phenomenon has 

been observed in various areas of human endeavor such as 

in telecommunications, video traffic, economics and 

hydrology. 

A fairly general model of long-memory is the 

Gegenbauer autoregressive moving average (GARMA) 

process proposed in [2]. It generalizes the definition of 

long-memory by including a parameter that accounts for 

persistent cyclic behavior of a random signal. It allows the 

power spectrum to have pole, not only at 0, but at any 

frequency in the interval [0,0.5]. This model has been 

shown to represent well some random signals such as the 

Bellcore Ethernet trace data [3].  

A GARMA(p,d,u,q) process is the output of the 

system function 
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is the autoregressive moving average, ARMA(p,q) system,

such that )z(Θ and )z(Φ have no common zeros, and 

their zeros lie inside the unit circle, which implies that the 

system is causal and invertible. On the other hand, the 

Gegenbauer system, ( ) d
zuz

−−− +− 2121 , d ≠ 0, can be 

written as 
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n is the Gegenbauer polynomial defined by  

)u(C d

n = ∑
=

−

−
+−−]/n[

k

knk

)d()!kn(!k

)nk)d(()u()(2

0

2

2

21

Γ
Γ

,

and [n/2] is the largest integer less than or equal to n/2. 

The parameter u provides information about the periodic 

movement in the random signal.  When the input is a 

stationary white noise, the output is called a Gegenbauer 

process, which is stationary if d<0.5 and |u| <1 or if  

d<0.25 and |u|=1; it is invertible if   –0.5<d and |u| <1 or  

-0.25<d and |u|=1 [2]. If we set u=1 in (1), we obtain the 

system function of the well-known autoregressive 

fractionally integrated moving average (ARFIMA(p,2d,q)) 

process, which has a power spectrum with pole at the 

origin when 0<d<0.5. It is called a fractionally differenced 

process when p=q=0 and u=1.  

The power spectrum of a GARMA(p,d,u,q) process is 

given by  
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where 1−=i , f ∈ (-0.5,0.5] and v = cos-1(u)/2π

∈ [0,0.5] is called the Gegenbauer frequency at which the 

power spectrum becomes unbounded when 0<d<0.5. It 

provides an alternative approach in finding the 

autocovariance function by evaluating the following 

integral 
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which can be computed using any software that allows 

singularities in the integrand. From [4], if u∈ (-1,1) the 

autocovariance function at lag k of a GARMA(0,d,u,0) is 

given by  
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where )x(Pb

a are the associated Legendre functions of the 

first kind. If |u|=1, )k(γ is the absolute autocovariance 

of a fractionally differenced process given in [1, p. 523]. 

The lack of simple expression for the autocovariance 

function, particularly for u∈ (-1,1), makes the analysis of 

Gegenbauer process difficult. It could be simplified by 

applying a decorrelating transformation such as a wavelet 

transform. 

In this paper, we deal with GARMA(p,d,u,q) process 

for which the Gegenbauer component is stationary, 

invertible and d>0, the ARMA component is causal and 

invertible, and )z(Θ and )z(Φ are coprime. We call this 

process a generalized long-memory process. We propose a 

Bayesian approach in estimating the parameters and 

predicting future values of this process by utilizing the 

approximate likelihood function of discrete wavelet packet 

coefficients. This provides an alternative method 

incorporating prior information about the parameters and 

utilizing the decorrelating property of wavelet transform. 

We illustrate our approach by an example applying 

simulated data.  

2. DECORRELATING THE SIGNAL  

The standard discrete wavelet transform (DWT) has been 

shown to be an effective within-and across-scale 

decorrelator of fractionally differenced process [5] and 

fractional Brownian motion [6]. However, for other 

processes including the generalized long-memory process, 

within-scale autocorrelations may not be negligible for 

some scales and for any length of the filter. To see this let 

{djt|j=1,2…,J, t=0,…,N2-j-1} be the nonboundary DWT 

coefficients of the random signal { } 1

0

−
=

N

ttY , where N=2J
for 

some integer J . From [7, p.348], the autocovariance 

function could be written as 
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where )f(H L,j is the Fourier transform of the level j

Daubechies wavelet filter }h{ l,j and * denotes the 

complex conjugation operator.  By setting j=j’ and t’=t+s

in (5) the within-scale covariance is given by   

Cov(djt,,dj(t+s))= ∫
−

21

21

222

/

/

Yj

sfj df)f(S|)f(H|e
j* π . (6) 

Given the wavelet filter { 1,h
l

}, the scaling filter { 1,g
l

} is 

defined by 1,g
l

= 11

11 ,Lh)( −−
+−

l

l for l = 0,…, L-1. For      

j>1, wavelet and scaling filters { j,h
l

} and { j,g
l

} are of 

the same length Lj = (2j-1)(L-1)+1 and denoted by Hj,L(f)

and Gj,L(f).  From [5, Lemma 4.1]  
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Hence for large L, (5) is approximately zero if 'jj ≠ .

This is not true for within-scale correlations, which could 

be relatively large even for large values of L. From [8], 

Daubechies’ wavelet filters converge monotonically to an 

ideal high-pass filter and Daubechies’ scaling filters 

converge monotonically to an ideal low-pass filter as the 

filter length L increases without bound. Thus, for an 

appropriate choice of large L, from (6) we may write the 

autocovariance in the form  

Cov(dj,t, dj,t+s) ≈ df)f(S)sfcos( Y
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which is relatively large when v∈[2-j-1, 2-j] and 0<d<0.5. 

However, as v approaches zero the effect of singularity 

diminishes due to the decreasing length of the interval    

[2
-j-1, 2-j]. Hence, for appropriate choice of filter length L,

within-scale correlations of wavelet coefficients of a 

fractionally differenced process, where v=0, are 

approximately zero. This approximation is not valid for 

long-memory processes with pole not close to the zero 

frequency. Hence, statistical analysis of a generalized 

long-memory process utilizing approximate likelihood 

function with a diagonal autocovariance matrix may not be 

valid when the orthonormal discrete wavelet transform 

(DWT) is used. This problem may be solved by applying a 

transformation that generalizes the partitioning scheme of 

the DWT.  

We approximately decorrelate a generalized long-

memory process across and within scale by utilizing the 

discrete wavelet packet transform (DWPT). This has been 

proposed in [9] to decorrelate a process when DWT fails. 

Unlike DWT, which has only one particular filtering 

sequence, DWPT executes all possible low-pass and high-

pass filtering combinations.  From [7, p. 215], for 

j=1,…,J0(J0≤J), we can write the DWPT coefficients 

{djnt|j=1,2…,J,n=0,…,2j -1,t=0,…,N2-j-1} in the form  

∑
−

=
−−+
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Mmodl]t[jnljnt Yud , t=0,…,Mj-1, 

where the jth level filter {ujnl} has length 

IV - 310

➡ ➡



Lj = (2j-1)(L-1)+1 and computed from { 1,h
l

} and { 1,g
l

}. 

The within-scale autocovariance function of nonboundary 

DWPT coefficients is given by  

Cov(djnt, djn(t+s))= ∫
−

21
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where the  transfer function  )f(U jn  depends only on 

( )⋅G and ( )⋅H such that the squared gain function 

2

)f(U jn is nominally band-pass over the frequency 

interval ⎥⎦
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2 jjjn

n
,

n
I . Although )f(SY has a pole at 

some frequency between 0 and 0.5, 
2

)f(U jn can have its 

pass-band on any interval jnI , n=0,…,2j . This allows for 

decorrelation by choosing the wavelet basis functions 

{ujnl} appropriately for some index n. For this purpose we 

consider the algorithm proposed in [9]. It successively 

selects the DWPT coefficients at each level by performing 

a white noise test on wavelet packet subbands at each 

level.  

3. ESTIMATION AND PREDICTION 

In this section, we propose a Bayesian approach in 

estimating parameters and predicting future values of 

generalized long-memory process utilizing the 

independence assumption across and within scales on 

appropriately selected DWPT coefficients. This 

formulation simplifies the likelihood into a univariate 

density.  

Let D = )'D,...,D,D( '

Jn

'

n

'

n J21 21 be the (2J-1)x1 vector 

containing the nonboundary DWPT coefficients of        

Yt(t = 0, 1,…,2J-1), where n1, n2,…,nk are selected using 

the approach in [9]. The vector 
kjnD = ( )jJ

kk jnjn D,...,D −21 ’

has DWPT coefficients at scale j as its components. 

Consider the re-scaled approximate bandpass variance  
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Assuming independence across and within scale, and  

Gaussian white noise innovations, the approximate 

likelihood function is given by )|D(f Ψ =
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This approximation does not depend on the length of the 

signal, but the length of the wavelet filter, which is under 

the control of the analyst.  

Let ),u,d,,( 2σΘΦΨ = and )u,d,,(' ΘΦΨ = denote 

the vectors of parameters, where ),...,( pφφΦ 1= and 

),...,( qθθΘ 1= . For fixed p and q, we consider the prior 

structure )(Ψπ = )( 2σπ )u,d(π ),( ΘΦπ . We adopt a 

uniform prior for Φ and Θ over Cp and Cq, respectively; 

an Inverse-Gamma ( )00 5050 δ.,v. for 2σ and a Beta(α,β)

for d and 2v, where α, β ≥ 1. Note that the choice α = β =1

gives the standard uniform prior on [0,1]. For a 

GARMA(p,d,u,q) process, the given prior for the long-

memory parameter d does not impose stationarity apriori, 

and so applies to both explosive and nonexplosive cases. 

The posterior density of Ψ is given by )D|(Ψπ ∝
)|D(f Ψ )(Ψπ . We make inferences about the 

parameters ),d,,( 2σΘΦΨ = by sampling from 

)D|(Ψπ using Markov chain Monte Carlo (MCMC) 

algorithm. To do this, we propose an MCMC sampler that 

utilizes the Metropolis-Hastings algorithm.  

First we block the parameters 'Ψ into two groups     

A1 = )u,d( and A2 = ),( ΘΦ . The sampling algorithm 

can then be summarized as follows:                                      

1) Initialize Ψ by taking 
∧

Ψ = argmax log( )|D(f Ψ .

2) Sample 2σ routinely from  
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3) Propose a value of the kth block conditioned on the 

previous value of the kth block and 2σ , and the other 

values of the other blocks A-k,

),A,Y|,A(q~A kt
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21 σ−
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We define the proposal distribution by 
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where V is the Fisher information matrix of 
∧
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4) Compute the acceptance probability   
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5) Sample U from Uniform(0,1). Update the kth block as 

follows: 

)r(

kA =
( )

⎩
⎨
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−
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,A,Y|A,Auif

A

A kt

'

k

r

k

)r(

k

'

k
21

1

σα
.

Repeat steps 2-5 for r= 1,2,…,N+M and for k = 1,2. 

Estimate the parameters from the 

{
)MN()N()N( ,...,, +++ ΨΨΨ 21
} beyond a burn-in of N

iterations. 
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For prediction purposes we use the original 

observations and the parameter values obtained through 

the preceding sampling algorithm. This provides a simpler 

approach with no need to reconstruct the signal. 

Let YN+F = (y0,…,yN-1, yN,…,yN+F-1), where YN is the 

vector representing the observed values and               
F

N
Y = (yN,…,yN+F-1) is the vector of F future unknown 

realizations. A GARMA(p,d,u,q) process can be written as 

( ) ( ) tt XBYB ΘΦ = , where Xt = ( ) t

d
ZBuB

−
+− 221 is the 

associated GARMA(0,d,u,0)  process. Hence, we have 

Yt = ∑
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p

i
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θ . (7)                                                      

Now, the joint density of F

NY is  

f( F
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jNjNj ),y|y(f Ψ , (8) 

where each fj(j=0,2,…,F-1) is univariate normal. Using 

(7), the mean and variance of fj are given by  

E ),Y|Y( jNjN Ψ1−++ = ∑
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and Var ),Y|Y( jNjN Ψ1−++ = Var(XN+j), respectively. 

Var(XN+j) is the variance of the associated 

GARMA(0,d,u,0) process given by (4) when k=0. 

Inferences about F

NY can be made on the basis of 

f( F

NY |YN,Ψ ) . The density of future unknown data is 

given by  

f( F

NY |YN)= ∫ ΨΨπΨ d)Y|(),Y|Y(f NN

F

N , (9)                            

where )Y|( NΨπ is the prior density of the vector of 

parameters Ψ . Using the output rΨ (r = 1,…,M) from the 

sampler, (9) can be approximated by Monte Carlo 

integration: )Y|Y(f N

F

N

∧

= 1

1

M
F

N N rM
r

f (Y |Y , )Ψ
=

∑ , where  

f( F

NY |YN,Ψ ) is defined by (8).

4. EXAMPLE 

We simulate a GARMA(p,d,u,q) process as follows. 

Step 1. Generate the autocovariances R(0), R(1),…,R(n) 

of GARMA(0,d,u,0) by evaluating (3) numerically for k =

0,1,…,n.

Step 2. Simulate Xt, a stationary Gaussian 

GARMA(0,d,u,0) time series of length n, using the method 

proposed in [10], which is used for any stationary process 

with given autocovariances.  

Step 3. Simulate an ARMA(p,q) process, using Xt as 

innovations. The result is the simulated GARMA(p,d,u,q)

process.  

Using this procedure, we constructed a data set with 

n=512 for a GARMA(1,0.25,0.6,1) process, where θ =0.3, 

φ = 0.2, and 2σ =1.  The posterior means and the 

posterior standard deviations (in parentheses) for the 

parameters are 
∧

θ =0.283 (0.036), 
∧

φ =0.192 (0.032), 

∧

d =0.271 (0.027), 
∧

u =0.612 (0.029), and 
∧

σ =1.01 (0.005). 

Convergence of the sampler was monitored by estimating 

the potential scale reduction factor based on 1000 

iterations and 10 replications. The kernel density estimates 

for the parameters were unimodal and symmetric about the 

posterior means.  

5. CONCLUSION 

Discrete wavelet packet transform simplifies the 

variance-covariance matrix of a generalized long-memory 

process by approximately decorrelating wavelet 

coefficients within and across scales. This approximation 

does not depend on the length of the signal, but the length 

of the wavelet filter, which is under the control of the 

analyst. It allows for a computationally efficient sampling 

from the posterior density of  p+q+2 parameters.  
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