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ABSTRACT

The problem of higher-order cumulants estimation is ad-
dressed in this paper. Higher-order cumulants are necessary
in many applications, such as blind source separation (BSS)
and blind deconvolution. In these applications, the cumu-
lants are usually estimated using sample estimation. In this
paper, a parametric method for cumulants estimation using
the Gaussian mixture model (GMM) is derived. The cumu-
lants are expressed in terms of the GMM parameters, and
estimated using the maximum-likelihood estimator. The
performance of the proposed model-based method was eval-
uated and compared to sample estimation using computer
simulations. The results show that the model-based esti-
mation outperforms the sample estimation in terms of root-
mean-square error.

1. INTRODUCTION

Higher order statistics (HOS) are widely used in many di-
verse fields, such as blind deconvolution [1] and blind source
separation (BSS) [2]. In these applications, the statistics,
represented by cumulants, are estimated using sample es-
timation in which the statistical expectations are replaced
by averaging over the process realizations assuming station-
arity and ergodicity of the signal. The performance of the
higher order cumulants sample estimation is not necessarily
optimal.

In this paper, a parametric method for cumulants is
presented. In [3] it is shown that any density can be esti-
mated to any degree of approximation using a finite order
Gaussian mixture model (GMM). Therefore, the GMM is
chosen to model the probability density function (pdf) of
the data. The cumulants are expressed by the GMM para-
meters, and the maximum likelihood (ML) estimator of the
cumulants is derived using the expectation-maximization
(EM) algorithm.

We first present the ML estimation of the cumulants for
an i.i.d. random vector process. This problem is encoun-
tered in BSS applications. Next, we derive an estimator for
cumulants of a strict sense stationary random process. This
problem is mainly encountered in blind deconvolution appli-
cations. The consistency of the estimator for N0-dependent
signals is proved.

2. NOTATION AND DEFINITIONS

Let x = [x1, . . . , xd]
T be a random vector, J = {1, . . . , d}

denote the set of indices of the components of x, and {jl}
L
l=1

be a sequence such that jl J and jl = jm l = m. The
cumulant of the vector x, cum(xr1j1 , . . . , x

rL
jL
), is defined as

the coe cient of the product vr1j1 ·v
r2
j2
· . . . ·vrLjL in the Taylor

series expansion of the cumulant generating function

g(v) = log E{exp(jvTx)} (1)

where {rl}
L
l=1 is a sequence of positive integers, (·)

T denotes
the transpose operation, v = [v1, . . . , vL]

T , and E stands
for the statistical expectation. The order of the cumulant

is given by k =
L

l=1
rl.

For simplicity of derivations, we are interested to trans-
form the data such that every cumulant of x can be ex-
pressed in terms of simple cumulants. Thus, we define
the following mapping function, h : I J where I =
{1, 2, . . . , k}, J = {1, . . . , d}:

h[1] = · · · = h[r1] = j1 ,
h[r1 + 1] = · · · = h[r1 + r2] = j2 ,
...
h[r1 + · · ·+ rL 1 + 1] = · · · = h[r1 + · · ·+ rL] = jL .

(2)
The cumulant cum(xr1j1 , . . . , x

rL
jL
) can now be calculated via

the simple cumulant of y = [y1, . . . , yk]
T , where y is a per-

mutation of x according to yi = xh[i], i I,

cy(I) = cum(y1, . . . , yk) = cum(x
r1
j1
, . . . , xrLjL ) . (3)

The permutation from x to y can be expressed via the trans-
formation y = Hh,I,J(x) where Hh,I,J : R

d Rk. For
example, for calculating cum(x21, x2, x3) in which k = 4,
d = 3, the function h[·] is set to be h[1] = h[2] = 1, h[3] =
2, h[4] = 3, and y = [y1, y2, y3, y4]

T = [x1, x1, x2, x3]
T .

Note that ymight contain variables not necessarily distinct.
The cumulants can be obtained from the moments via

the following moment-to-cumulant formula [1]:

cy(I) =

A

( 1)q 1(q 1)!

q

Ip :p=1

my(Ip) , (4)

in which A is a set of all sequences of disjoint subsets of I
whose union is equal to I

A = | = {Ip}
q
p=1; Ip I; Ip Im = p = m;

q
p=1Ip = I , (5)

and

my(Ip) = E

i Ip

yi (6)

are the joint moments of x.
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3. MODEL-BASED ESTIMATION OF

CUMULANTS OF AN I.I.D. VECTOR

SEQUENCE

The cumulants of a vector process are commonly obtained
by substitution of the sample estimates of its moments into
(4). The sample estimation is not claimed to be optimal in
any sense, except for the case of Gaussian random processes,
in which the sample estimation of the 1st and 2nd cumu-
lants can be shown to be the ML estimator. The perfor-
mance of the sample cumulant estimator is poor, especially
for higher order cumulants.

In this section, a parametric approach for estimating cu-
mulants of a random vector based on GMM is presented. In
[3] it is proved that any density can be estimated to any de-
gree of approximation using a finite Gaussian mixture. The
ML estimator of the cumulants can be obtained from the es-
timated parameters of the Gaussian mixture pdf. Suppose
that the observed process {xn}

N
n=1, xn = [xn1, . . . , xnd]

T is
an i.i.d. random process with GMM pdf:

fx(xn; ) =

M

m=1

wmN(xn;µm,Cm) , (7)

where µm Rd×1 andCm Rd×d are the mean vector and
the covariance matrix of the mth Gaussian, respectively.
The unknown vector parameter, = {wm}

M
m=1, {µm}

M
m=1,

{Cm}
M
m=1 , is a collection of the GMM parameters, and

N(x;µ,C) denotes the Gaussian density function with ar-
gument x, expectation µ, and covariance matrix C. The
moments and cumulants of the vector x with the above
GMM pdf depend on the vector , and thus, they will be
denoted by m

y,
(·), c

y,
(·), respectively.

The cumulants of the process can be obtained from the
moments via (4). By substitution of (7) into (6), the re-
quired moments can be expressed as

m
y,
(Ip) =

x i Ip

yi

M

m=1

wmN(x;µm,Cm)dx

=

M

m=1

wm ·
x i Ip

yiN(x;µm,Cm)dx

=

M

m=1

wmEm
i Ip

yi

Ip , A (8)

in which Em denotes the statistical expectation under the
Gaussian pdf N(µm,Cm). Thus, the problem decreases to
evaluating separately the joint moments of Gaussian dis-
tributed vectors. For this purpose, the following theorem is
applied.

Theorem 1 [4]: Let y = [y1, . . . , yk]
T be a zero-mean,

Gaussian vector with a known covariance matrix C possibly
singular, I denotes the set of indices of the component of
y, then

E

k

i=1

yi =

0 if k is odd

P,Q

k/2

p=1

cip,jp if k is even
, (9)

where the sum runs over all decompositions of I into disjoint

subsets P = {ip}
k/2
p=1, Q = {jp}

k/2
p=1 such that i1 < · · · <

ik/2, and ip < jp for every p.
In the case where y has a non-zero mean, µ = {µi}i I ,

Theorem 1 can be applied to y µ, and E
k

i=1
yi can

be evaluated by solving

E

l I

(yl µl) =

0 if k is odd

P,Q

k/2

p=1

cip,jp if k is even
.

(10)
Expanding the left hand side of (10) yields

E
l I

yl =
D,B j B

( 1) (B)+1µjE
i D

yi

+

0 if k is odd

P,Q

k/2

p=1

cip,jp if k is even

(11)

in which the first sum in the right hand side of (11) runs
over all partitions of I into disjoint subsets D and B, whose
union is equal to I and B = , and is the counting mea-
sure. The second sum runs over all P and Q defined in
Theorem 1. Hence, evaluation of E

l I
yl via (11) re-

quires the pre-evaluation of E
l D

yl for every D I

using (11), resulting in a recursive process.

The expectations Em i Ip
yi , Ip , A,

m {1, . . . ,M} from (8) can be obtained using Theorem
1 and its extension in (11). Then the cumulants of the
GMM process, c

y,
(I), can be calculated using (4).

Using the invariance property, the ML estimator of the
cumulants is given by

ĉy, (I)ML = c
y,
ˆ
ML

(I) (12)

where ˆML is the ML estimate of the GMM parameters

ˆ
ML = argmax

N

n=1

log

M

m=1

wmN(xn;µm,Cm) . (13)

The above ML estimator involves a nonlinear optimization.
The most common method for performing this optimization
is the EM algorithm [5]. Under the i.i.d. condition, the ML
estimator of ĉ

y, ML
(I) converges in probability to c

y,
(I)

[6].

4. MODEL-BASED ESTIMATION OF

CUMULANTS OF A STATIONARY PROCESS

Consider an observed process {xn}
N
n=1, which is strict sense

stationary with marginal pdf fx(·). We assume that {xn}
N
n=1

is an N0-dependent process, that is, xn and xn+ are inde-
pendent random variables | | > N0 0. Let {nl}

L
l=1

be a sequence of integers such that nl {1, . . . , N}, and
nl > nm for every l > m. Then, due to the stationarity of
the process, it follows that

cum(xr1n1 , . . . , x
rL
nL) = c

k
x ( 1, . . . , L 1, r1, . . . , rL) (14)
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where l = nl+1 nl, l = 1, . . . , L 1 and {rl}
L
l=1 was

defined in Section 2. We organize the data, {xn}
N
n=1, into

vectors zn = [xn, xn+1, . . . , xn+d]
T to obtain a sequence of

random vectors {zn}
N
n=1, where N = N d and d = L 1

is the maximum lag of ckx ( 1, . . . , L 1, r1, . . . , rL). Since

the vector process {zn}
N
n=1 is stationary, then

cum(zr1nn1 , . . . , z
rL
nnL) = c

k
x ( 1, . . . , L 1, r1, . . . , rL) (15)

where zni denotes the ith component of zn. Hence, the
problem of estimating the cumulants of {xn}

N
n=1 is equiv-

alent to estimating the cumulants of the random vector

process {zn}
N
n=1. Note that the vectors zn are not inde-

pendent. In similar to the previous section, we define the

sequence {yn}
N
n=1 by yn = Hh,I,J(zn), where the transfor-

mation Hh,I,J is defined in Section 2 with I = {1, 2, . . . , k},
J = {1, 2, . . . , d}, and the mapping function h : I J in
this case is set to be

h[1] = · · · = h[r1] = 1 ,
h[r1 + 1] = · · · = h[r1 + r2] = 1 + 1 ,
h[r1 + r2 + 1] = · · · = h[r1 + r2 + r3] = 1 + 2 ,
...
h[r1 + · · ·+ rL 1 + 1] = · · · = h[r1 + · · ·+ rL] = 1 + L 1 .

(16)
Using this transformation, the cumulant
ckx ( 1, . . . , L 1, r1, . . . , rL) can be expressed in terms of the
simple cumulant cy(I):

cy(I) = cum(yn1, . . . , ynk) = c
k
x ( 1, . . . , L 1, r1, . . . , rL)

(17)
where yni denotes the ith the component of yn.

The marginal density function of the vectors {zn}
N
n=1

is modeled by Gaussian mixture: fz(zn; ), where is the

vector of GMM parameters. As mentioned above, {zn}
N
n=1

is not an independent random sequence. Nevertheless, for
the sake of simplicity, we assume that it is an independent
sequence, and estimate by

ˆ
MARG = argmax

N

n=1

log fz(zn; ) . (18)

The subscript MARG denotes that the estimation is based
on the marginal distribution. ˆ

MARG would be the ML

estimator if {zn}
N
n=1 were an independent sequence. The

ML estimator of cumulants of an i.i.d. random sequence
with Gaussian mixture density was presented in the previ-
ous section, and can be implemented here. In Appendix I,
it is shown that ˆMARG, obtained under the independence
assumption, is consistent even when the independence as-
sumption is not satisfied. Finally, the cumulants of the
scalar process xn can be obtained from the cumulants of
the vector process zn according to (15).

5. SIMULATION RESULTS

The performance of the proposed model-based technique
was examined in terms of root-mean-square error (RMSE)
and compared to sample estimation via simulations. Three

examples are presented here. In the first two examples, the
cumulants of an i.i.d. random vector were estimated, while
in the last example, the cumulants of a stationary random
process are estimated.

In the first example, an i.i.d. random vector of length
d = 4 with 3rd-order GMM distribution was generated
with mixture parameters w1 = 0.7, w2 = 0.2, w3 = 0.1,
µ1 = µ2 = µ3 = [0, 0, 0, 0]

T , and full rank, non-diagonal co-

variance matrices. The cumulant of interest is cum x21, x
2
3 .

The real value of the cumulant was calculated theoretically
and found to be 4.94. 200 experiments were carried out for
evaluation of the RMSE in the cumulant estimation which
is presented in Fig. 1 as a function of the data length, N .
In the second example, the performance of the proposed
method, applied to non-GMM signals, is evaluated. For this
purpose, d = 4 zero-mean, i.i.d. Laplace distributed sources
with unit variance were mixed by a linear 4× 4 mixing ma-
trix, which was set to be proportional to an upper-triangle
Toeplitz matrix with first row equal to [1, 2, 3, 4]. The cu-
mulant of interest is cum (x1, x2, x3, x4). The real value of
the cumulant was calculated theoretically and found to be
0.12. Fig. 2 shows that the algorithm performs better than
sample estimation also for non-GMM signals.

For the third example, a 3rd-order GMM density func-
tion was generated and passed through a linear time-invariant
moving average (MA) system. The MA coe cients were set
to be b0 = 1, b1 = 2.9, b2 = 2.3. The mixture parameters
of the excitation are w1 = 0.7, w2 = 0.2, w3 = 0.1, µ1 =
µ2 = µ3 = 0, and 2

1 = 1; 2
2 = 0.1; 2

3 = 0.7. The cumu-
lant of interest is c4x ( 1 = 1, 2 = 2, r1 = 1, r2 = 1, r3 = 2, ).
The real value of the cumulant was calculated theoretically
and found to be 5.84. 500 experiments were carried out for
evaluation of the RMSE in the cumulant estimation which
is presented in Fig. 3 as a function of the signal length.

Appendix I

Proof of consistency of ˆMARG from (18)

The sequence {zn}
N
n=1 is assumed to beN0+d-dependent.

Therefore, the sequence

n = log fz (zn; ) E {log fz (zn; )} n = 1, . . . , N

is also (N0 + d)-dependent. We show that the average of a
zero-mean, (N0 + d)-dependent process converges in prob-
ability to zero:

¯
N =

1

N

N

n=1

n
p
0 . (19)

For this purpose the following proposition is used.

Proposition A1: Let { n}n=1 and { n}n=1 be sequences
of random variables on the same probability space such that

n
p
µ and ( n n)

p
0. Then n

p
µ where µ is

assumed to be deterministic [7].
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For some integer j such that j > 2(N0 + d) let

N j =
1

N
1 + · · ·+ j (N0+d)

0

+ j+1 + · · ·+ 2j (N0+d)

1

+ · · ·+ (r 1)j+1 + · · ·+ rj (N0+d)

r 1

=
r

N
·
1

r

r 1

k=0

k ,

(20)
where r = N /j is the integer part of N /j. Note that

N j is proportional to sum of zero-mean i.i.d. random
variables. Applying the weak law of large numbers to N j

leads to N j
p
0 as N . It remains to show that

¯
N N j

p
0 as N and due to proposition A1 it

follows that ¯N
p
0. For this purpose, we examine the

sequence

¯
N N j =

r

N

1

r

r 1

l=1

( lj N0+d+1 + · · ·+ lj)

+
1

r
( rj N0+d+1 + · · ·+ N ) (21)

which is also a sum of i.i.d. random variables. Hence, by
applying the law of large numbers, proposition A1 is satis-
fied. It therefore follows that

1

N

N

n=1

log (fz(zn; ))
p

z

log (fz(z; )) fz(z; 0)dz, (22)

where 0 denotes the true value of the parameter . The
right hand side of (22) is maximized for = 0. Thus, as
N , the maximum of left hand side of (22) is obtained

by ˆ 0.
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Figure 1: Cumulant estimation RMSE of a GMM distrib-
uted random vector process.
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Figure 2: Cumulant estimation RMSE of a linearly mixed
Laplace i.i.d. random vector process.
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Figure 3: Cumulant estimation RMSE of an N0-dependent
random process.
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