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ABSTRACT
The time-frequency ARMA (TFARMA) model is introduced as a
time-varying ARMA model for nonstationary random processes
that is formulated in terms of time shifts and frequency (Doppler)
shifts. We present Akaike and minimum description length in-
formation criteria for the practically important task of selecting
the TFARMA model orders. Because the estimated inverse filter
used by the resulting order selection procedures is not guaranteed
to be stable, we propose an iterative stabilization algorithm that
is based on the concepts of instantaneous roots and root reflec-
tion/shrinkage. The performance of the proposed order selection
and stabilization techniques is assessed through simulation.

1. INTRODUCTION

Time-varying AR, MA, and ARMA models are powerful tools for
a wide range of signal processing applications involving nonsta-
tionary random processes (e.g. [1]). In [2, 3], we introduced the
time-frequency AR (TFAR) and time-frequency MA (TFMA) models
whose new feature is their formulation in terms of time-frequency
(TF) shifts, i.e., time delays and Doppler frequency shifts. We also
proposed efficient estimators for the TFAR and TFMA parameters
and demonstrated the advantage of TFAR and TFMA models and
the corresponding parameter estimators over previously proposed
time-varying AR and MA models and estimators [2, 3].

Here, we discuss the practically important task of estimating the
TFAR and TFMA model orders. For efficiency of exposition, we
consider the general framework of TFARMA models, which are ob-
tained by straightforward combination of the TFAR and TFMA
models. A problem in the context of order estimation is the stabi-
lization of the estimated inverse innovations filter. The main contri-
butions of this paper are the adaptation of two information criteria
for model order selection to the novel TFARMA models and the
formulation of an iterative stabilization algorithm.

The paper is organized as follows. The TFARMA model is intro-
duced in Section 2. In Section 3, we present the Akaike information
criterion (AIC) and the minimum description length (MDL) crite-
rion for TFARMA models. The concept of λ -hyperstability and
an algorithm for stabilization are proposed in Section 4. Finally,
simulation results are presented in Section 5.

2. TFARMA MODELS

A nonstationary random process x[n] corresponding to a TFARMA
model is defined by the equation

(Ax)[n] = (Be)[n], n = 0, . . . ,N−1 , (1)

where e[n] is the innovations noise (assumed zero-mean, white, and
stationary) and A and B denote the TFAR and TFMA operators, re-
spectively. These operators are linear, time-varying systems defined
as [2, 3]

A
�=

MA

∑
m=0

LA

∑
l=−LA

am,l Sm,l , B
�=

MB

∑
m=0

LB

∑
l=−LB

bm,l Sm,l , (2)
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where am,l and bm,l denote the (complex) TFAR and TFMA pa-
rameters, respectively, and Sm,l is the TF shift operator defined by

(Sm,l x)[n] = e j 2π
N ln x[n−m]. Assuming a monic TFAR operator (i.e.,

a0,l = δ [l]), the TFARMA process x[n] can be rewritten as

x[n] = −
MA

∑
m=1

LA

∑
l=−LA

am,l e j 2π
N ln x[n−m] +

MB

∑
m=0

LB

∑
l=−LB

bm,l e j 2π
N ln e[n−m].

(3)
Formally, we can also write x[n] = (He)[n] with the time-varying
innovations filter H = A

−1
B. Without loss of generality, we as-

sume that b0[n] �= ∑LB
l=−LB

b0,l e j 2π
N nl is positive (i.e., b0,l is a corre-

lation sequence). The TFAR and TFMA models are special cases
obtained for bm,l = b0,l δ [m] and am,l = δ [m]δ [l], respectively.

Order-recursive parameter estimators for TFARMA models can
be obtained by suitable combination of the TFAR and TFMA pa-
rameter estimators described in [2, 3]; they will be presented in a
future paper [4]. Given an observed signal (process realization)
x[n], these parameter estimators yield estimates âm,l and b̂m,l of the
TFARMA parameters in (2) or (3) for prescribed model orders MA,
LA, MB, LB. This leaves the model orders to be estimated.

3. TFARMA ORDER ESTIMATION

Estimation of the TFARMA model orders MA, LA, MB, LB in the
Gaussian case can be accomplished by minimizing one of the “in-
formation criteria” (IC) proposed e.g. in [5–7]. Here, we consider
the adaptation of AIC and MDL to the case of TFARMA models.
Without loss of generality, we assume that b0,0 = 1.

For convenience, we combine all model orders into the model
order vector s

�= [MA LA MB LB]T. The number N
H

of complex
TFARMA parameters am,l ,bm,l depends on s according to

N
H
(s) = MA(2LA+1) + (MB+1)(2LB+1) −1

(recall that a0,l = δ [l] and b0,0 = 1 are known). Usually N
H
(s) �

N. We also arrange the real and imaginary parts of all am,l ,bm,l into
the real TFARMA parameter vector θ of length 2N

H
(s).

3.1. Fundamentals

Most order estimation procedures use inverse filtering to obtain
an estimate ê[n] of the innovations noise e[n] in (1) or (3), i.e.,

ê[n] �= (Ĥ−1x)[n] with Ĥ = Â
−1

B̂. Here, Â and B̂ are given by (2)
with am,l and bm,l replaced by estimates âm,l and b̂m,l , respectively.
This inverse filtering requires that Ĥ

−1 is stable (cf. Section 4).
We model the random variables ê[n] as i.i.d., zero-mean, circular
complex Gaussian with variance v

�= var{ê[n]}. Thus, the probabil-
ity density function (pdf) of a single sample of ê[n] is
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p
(
ê[n];v(s)

)
=

1
π v(s)

exp

(
− |ê[n]|2

v(s)

)
, (4)

where the notation v(s) indicates the dependence of the variance v
on the model order vector s (due to the dependence of Ĥ on s).

The IC build upon the estimated variance of ê[n],

v̂
�=

1
N

N−1

∑
n=0

|ê[n]|2, (5)

which also depends on s, i.e., v̂ = v̂(s). They include a penalty
term that increases with the number of parameters N

H
(s) to prevent

overfitting. The search set to be used for determining s is

S ={0, . . . ,Mmax
A }×{0, . . . ,Lmax

A }×{0, . . . ,Mmax
B }×{0, . . . ,Lmax

B },
where Mmax

A etc. are suitably chosen maximum model orders. All
models with s ∈ S can be estimated in an order-recursive man-
ner using the methods described in [2–4], yielding an estimated
TFARMA parameter vector θ̂ for each order vector s.

3.2. The AIC

The AIC was originally derived by approximative minimization
of the Kullback-Leibler distance between the pdf of the data and
the pdf of the model [5, 7]. It is given by twice the negative log-
likelihood of the i.i.d. random vector

[
ê[0] · · · ê[N−1]

]T , with the
innovations variance v(s) replaced by its estimate v̂(s) in (5), plus
twice the number 2N

H
(s) of real-valued TFARMA parameters, i.e.,

−2∑N−1
n=0 log p

(
ê[n]; v̂(s)

)
+4N

H
(s). Inserting (4) and suppressing

irrelevant constant terms, we obtain

AIC(s) = log v̂(s) + 2
N

H
(s)

N
.

The model orders are estimated by minimizing AIC(s) over S ,

ŝ = arg min
s∈S

AIC(s) .

The AIC is biased (even asymptotically for N → ∞), and it tends to
overfit (i.e., produce order estimates that are too large) [7].

3.3. The MDL

The MDL criterion was introduced in [6] for dynamic innovations
models and time-invariant ARMA models with real-valued param-
eters. The underlying principle is to find the model for which the
description length required to represent the observation x[n] using
the information contained in the estimated model parameters âm,l ,
b̂m,l , and ê[n] is shortest. For TFARMA models with complex pa-
rameters, the MDL is shown in Appendix A to be given by

MDL(s) = log v̂(s) +
[

log(N+1)+ ρ
]N

H
(s)+1/2

N
, (6)

with ρ = 1− log12 ≈−1.5 (the ρ term was suppressed in [6] but
is included here because we observed it to improve the MDL’s per-
formance). The model order estimates are again obtained by mini-
mizing MDL(s) over S .

4. STABILIZATION OF TFARMA MODELS

The inverse of the estimated TFAR operator Â occurs in the esti-
mated innovations filter Ĥ = Â

−1
B̂. Similarly, the inverse of the

estimated TFMA operator B̂ occurs in the inverse estimated inno-
vations filter Ĥ

−1 = B̂
−1

Â that is required for the inverse filtering
ê[n] = (Ĥ−1x)[n]. To obtain reasonable modeling results, it is es-
sential that the inverses Â

−1 and B̂
−1 exist and are stable in an

appropriate sense. In this section, we discuss a stability concept
based on instantaneous roots and a stabilization procedure that has
produced satisfactory results in our simulations. We will use the
generic symbols C, cm,l , M, L to denote either A, am,l , MA, LA
(TFAR part) or B, bm,l , MB, LB (TFMA part).

4.1. Instantaneous Roots

In the time-invariant case, stability of the inverse system means that
the original system is minimum-phase, i.e., the roots (zeros) of the
transfer function of the original system in the complex frequency
plane (z-plane) are within the unit circle. For a time-varying system
occurring in the TFARMA context, C = ∑M

m=0 ∑L
l=−L cm,l Sm,l , a

time-varying transfer function can be defined as

H
C
(n,z) �=

M

∑
m=0

cm[n]z−m ,

with the time-varying impulse response

cm[n] �=
L

∑
l=−L

cm,l e j 2π
N nl , m = 0, . . . ,M .

For later use, we define the monic version of cm[n] as

dm[n] �=
cm[n]
c0[n]

.

We will also use H
C
(n,z) evaluated on the unit circle z = e j 2π

N k,

H
C
[n,k] �= H

C

(
n,e j 2π

N k) =
M

∑
m=0

L

∑
l=−L

cm,l e− j 2π
N (km−nl),

where k ∈ [−N/2,N/2−1] is a frequency index.
The instantaneous roots (or frozen roots) rm[n] are defined as the

roots of H
C
(n,z) for the respective time instant n [8–10]. It follows

that H
C
(n,z) can be factored in terms of the rm[n] as

H
C
(n,z) = c0[n]

M

∏
m=1

(
1− rm[n]z−1) .

There exists a nonlinear one-to-one mapping between the (monic)
time-varying impulse response {dm[n]}m=0,...,M and the (unor-
dered) instantaneous roots {rm[n]}m=1,...,M at the same time n.

4.2. λ -Hyperstability

Similar to the time-invariant case, it is undesirable that the instan-
taneous roots rm[n] have magnitude close to or larger than one. In
particular, in the underspread case [11] the TF transfer functions of
a TFARMA model and of its inverse can be approximated as

H
H
[n,k] ≈ H

B
[n,k]

H
A
[n,k]

, H
H−1 [n,k] ≈ H

A
[n,k]

H
B
[n,k]

.

Consider e.g. the first relation, in which H
A
[n,k] = H

A

(
n,e j 2π

N k
)

is
the denominator. If some instantaneous roots of A fall on or out-
side the unit circle during a certain time interval, this will cause
excessive values of H

H
[n,k] during that time interval, which can be

considered a temporary instability. Conversely, if during a certain
time interval H

H
[n,k] is very large at a certain frequency k0, it can

be expected that during that time interval at least one of the instan-
taneous roots of A lies close to the unit circle about z = e j 2π

N k0 .
Motivated by these reflections, we will call a time-varying sys-

tem C λ -hyperstable (cf. [9]) if all its instantaneous roots have
magnitudes less than λ for all n, i.e.,

|rm[n]| < λ for all m,n .

Typically, λ is chosen slightly below one.
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4.3. Model Stabilization

We next present an iterative procedure for stabilizing a TF model C

via nonlinear modification of the estimated parameters ĉm,l . This
procedure uses root reflection as known from the time-invariant
case [8] as well as the fact that slight modifications of the instan-
taneous roots do not drastically change the parameters ĉm,l (cf. the
continuous dependence theorem [12]). The procedure is initialized

by r(0)
m [n] �= r̂m[n], i.e., the estimated instantaneous roots derived

from d̂m[n] = ĉm[n]/ĉ0[n] = ∑L
l=−L ĉm,l e j 2π

N nl/∑L
l=−L ĉ0,l e j 2π

N nl .
At the ith iteration, which is only performed if the model was not

λ -hyperstable at the end of the (i−1)th iteration, the instantaneous
roots r(i−1)

m [n] obtained at the (i−1)th iteration are “compressed.”
First, all instantaneous roots with magnitude larger than one are
reflected on the unit circle:

ρ(i)
m [n] �=

⎧⎪⎨
⎪⎩

r(i−1)
m [n] ,

∣∣r(i−1)
m [n]

∣∣ ≤ 1 ,

1(
r(i−1)

m [n]
)∗ ,

∣∣r(i−1)
m [n]

∣∣ > 1 .

This root reflection leaves the magnitude of H
C
(n,z) or H

C
[n,k]

unchanged. Next, a “root shrinkage” is performed according to

r(i)′
m [n] �=

{
λ ρ(i)

m [n] , |ρ(i)
m [n]| < λ ,

λ2 ρ(i)
m [n] , λ ≤ |ρ(i)

m [n]| ≤ 1 .

We use the factor λ2 rather than λ in the second case because we
observed that this modification results in faster convergence.

Let d(i)′
m [n] denote the monic time-varying impulse response cor-

responding to the modified instantaneous roots r(i)′
m [n]. Furthermore

let c(i)′
m,l

= 1
N ∑N−1

n=0 d(i)′
m [n] ĉ0[n]e− j 2π

N ln be the associated model pa-

rameters. To enforce the given Doppler order L, we set

c(i)
m,l

�=

{
c(i)′

m,l
, |l| ≤ L ,

0 , |l| > L .

This corresponds to the following modified (lowpass-filtered) im-
pulse response:

c(i)
m [n] �=

L

∑
l=−L

c(i)
m,l

e j 2π
N nl =

L

∑
l=−L

c(i)′
m,l

e j 2π
N nl .

Finally, we calculate the instantaneous roots r(i)
m [n] associated

with d(i)
m [n] = c(i)

m [n]/ĉ0[n] and check if the λ -hyperstability prop-

erty is satisfied: If |r(i)
m [n]| < λ for all m and n, the stabilization

procedure is terminated, otherwise the next ((i +1)th) iteration is
performed. An example of an iteration is illustrated in Fig. 1.

Typically, a few iterations suffice to achieve λ -hyperstability. In
the example of Fig. 1, only two iterations were required. Our sim-
ulations showed that reasonable results are obtained as long as the
initial root magnitudes |r̂m[n]| are not larger than about 1.2.

5. SIMULATION RESULTS

In our first experiment, we generated 100 realizations of a synthetic
TFAR process with orders MA = 4 and LA = 2. From each realiza-
tion, the parameters of all TFAR models up to orders Mmax

A = 2MA,
Lmax

A = 2LA were estimated using the estimator proposed in [2].
These parameter estimates were then stabilized as described in Sec-
tion 4.3. After inverse filtering of the process realizations using
all stabilized estimated models, the model orders were estimated
from each filtered realization using the AIC and MDL criteria. Fig.
2 shows marginal histograms of the estimated model orders M̂A
and L̂A. It is seen that both order estimation criteria are quite re-
liable. The MDL outperforms the AIC in terms of correctly esti-
mated model orders, and the AIC tends to overfit the model orders.

(a)

0

1

2

3

0.4

0.6

0.8

1.0

1.2

(b)

0

1

2

3

0.4

0.6

0.8

1.0

1.2

(c)

0

1

2

3

0 63 → n 191 255
0.4

0.6

0.8

1.0

1.2

0 63 → n 191 255

Figure 1: Illustration of the first stabilization iteration (λ = 0.98)
for a model of orders M = 3, L = 2 with |r̂m[n]|max = 1.1545:
(a) initial time-varying impulse response ĉm[n], m = 0, . . . ,3 (left)
and corresponding instantaneous roots r̂m[n] (right), (b) impulse
response and roots after reflection and shrinkage, (c) impulse re-
sponse and roots after lowpass filtering. At the end of this first iter-
ation, λ -hyperstability is nearly achieved (|r(1)

m [n]|max = 0.984).

We carried out similar experiments for TFARMA processes with
MA ∈ {2, . . . ,5}, MB = MA−1, and LA = LB = 2, as well as for
TFARMA processes with MA = 2, MB = MA−1 = 1, and LA =
LB ∈ {0, . . . ,3}. The percentage of correctly estimated model or-
ders MA = MB+1 for the first case and correctly estimated model
orders LA = LB for the second case is shown in Fig. 3. The results
of both methods degrade with increasing model order and tend to
be poorer than for the TFAR model considered previously. It is also
seen that the AIC is better than the MDL for estimating the M order
whereas the MDL is better than the AIC for estimating the L order.
Both estimators are perfect in the limiting case of stationary pro-
cesses (L = 0). Our simulations also showed that the MDL tends to
underfit the M order (but not the L order). For TFMA models (not
shown here), our simulations produced results that were similar to
those obtained for TFARMA models.

6. CONCLUSION

We proposed estimators for the delay and Doppler orders of time-
frequency ARMA (TFARMA) models, including TFAR and TFMA
models as special cases. The classical AIC and MDL information
criteria were adapted to TFARMA models, and a novel technique
for stabilization of the inverse time-varying innovations filter was
developed. Our simulations showed that MDL-based order estima-
tion outperforms AIC-based order estimation in most cases.
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A. DERIVATION OF THE MDL

Our derivation of the MDL in (6) is largely analogous to that of [6].
We nevertheless include a sketch of this derivation because there
are some subtle differences, mostly due to the fact that the model
parameters and innovations process are complex.

The idea is to code (describe) s as well as quantized versions of
ê[n], v = var{ê[n]}, and θ̂i = (θ̂)i, and choose the model orders with
minimal overall description length (DL). The quantization accura-
cies are ±δe/2, ±δv/2, and ±δi/2 (i = 1, . . . ,2N

H
), respectively.
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Figure 2: Histograms of order estimates M̂A and L̂A for a TFAR
process with MA = 4, LA = 2 (white bins: AIC, black bins: MDL).
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(b)
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Figure 3: (a) Percentage of correctly estimated model order MA =
MB+1 for TFARMA processes with MA ∈ {2, . . . ,5}, MB = MA−1,
LA = LB = 2; (b) percentage of correctly estimated model order
LA = LB for TFARMA processes with MA = 2, MB = 1, LA = LB ∈
{0, . . . ,3} (dashed lines: AIC, solid lines: MDL).

The probability mass function of a single quantized sample ê[n] is
approximately given by δ 2

e p(êR[n]) p(êI[n]). Here, êR[n] and êI[n]
are respectively the real and imaginary part of ê[n], which are in-
dependent due to circular symmetry and distributed as N (0,v/2),
i.e., p(êR/I[n]) =

(
1/
√

πv
)

exp
(− ê2

R/I[n]/v
)
. The average DL (in

nats) for ê[n] using separate coding of êR[n] and êI[n] is given by

L(ê[n]) = − log
(
δ 2

e p(êR[n]) p(êI[n])
)

= log
πv
δ 2

e
+

|ê[n]|2
v

.

The average DL for the i.i.d. vector ê =
[
ê[0] · · · ê[N−1]

]T follows
as

L(ê) =
N−1

∑
n=0

L(ê[n]) = N log
πv
δ 2

e
+

1
v

N−1

∑
n=0

|ê[n]|2 .

The DLs for the quantized versions of v and θ̂ are respectively given
by (the signs of the parameters θ̂i are not coded [6])

L(v) = log
v
δv

, L(θ̂) =
2N

H

∑
i=1

log
|θ̂i|
δi

.

The total DL needed for coding ê, v, θ̂, and s is thus obtained as

L(ê,v, θ̂,s) = L(ê) + L(v) + L(θ̂) + L(s)

= N log
πv
δ 2

e
+

1
v

N−1

∑
n=0

|ê[n]|2 + log
v
δv

+
2N

H

∑
i=1

log
|θ̂i|
δi

+ L(s) ,

where L(s) = log(MA+1)+ log(LA+1)+ log(MB+1)+ log(LB+1).
Minimizing L(ê,v, θ̂,s) with respect to v yields the estimate

v̂MDL =
1

N+1

N−1

∑
n=0

|ê[n]|2 =
N

N+1
v̂ , (7)

with v̂ from (5). Substituting v̂MDL for v in L(ê,v, θ̂,s) yields

L(ê, v̂MDL, θ̂,s) = N log
π
δ 2

e
+ (N+1)

(
1+ log v̂MDL

)

+ log
1
δv

+
2N

H

∑
i=1

log
|θ̂i|
δi

+ L(s) .

Next, we find optimal quantization levels δv and δi. Follow-
ing [6], the dependence of L(ê, v̂MDL, θ̂,s) on v̂MDL and θ̂ is ap-
proximated by a second-order Taylor series about the nonquan-
tized versions of v̂MDL and θ̂. The corresponding quantization
errors (differences between the quantized and nonquantized ver-
sions) are modeled as random variables that are independent and
uniformly distributed within the respective elementary quantization
intervals. Taking the expectation of the Taylor series approximation
of L(ê, v̂MDL, θ̂,s) with respect to the quantization errors and mini-
mizing it with respect to δv and δi yields the optimal values (cf. [6])

δ̂v = v̂MDL

√
12

N+1
, δ̂i =

√√√√ 12

(N+1) ∂ 2 log v̂MDL

∂ θ̂ 2
i

.

Substituting δ̂v for δv and the δ̂i’s for the δi’s in the expectation of
the Taylor series approximation for L(ê, v̂MDL, θ̂,s) yields

N log
π
δ 2

e
+ N +1 + N log v̂MDL +

(2N
H

+1)[log(N+1)+ρ]
2

+
1
2

2N
H

∑
i=1

log

(
θ̂ 2

i
∂ 2 log v̂MDL

∂ θ̂ 2
i

)
+ L(s) ,

with ρ = 1− log12. Dividing by N, suppressing terms that do not
depend on s, neglecting the last two terms [6], and replacing v̂MDL
by v̂ (cf. (7)) finally yields the MDL (6).
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