
NON-ORTHOGONAL ZERO-DIAGONALIZATION FOR SOURCE SEPARATION BASED
ON TIME-FREQUENCY REPRESENTATION

El Mostafa Fadaili, Nadège Thirion-Moreau and Eric Moreau

STD, ISITV, University of Sud Toulon Var,
avenue George Pompidou, BP56,

F-83162 La Valette du Var, Cedex, FRANCE
e-mail: {fadaili,thirion,moreau}@univ-tln.fr

ABSTRACT

This paper is concerned with blind separation of source sig-
nals using time-frequency representations. We show that the
separation can be realized through the non orthogonal joint
zero diagonalization of spatial quadratic time frequency ma-
trices. One advantage of the proposed method is that it does
not require any whitening stage and thus it is intended to
work even with a class of correlated signals.

1. INTRODUCTION

We consider the blind separation of instantaneous mixture
of signals called sources. This problem has found numer-
ous solutions in the past ten years. However, more recently,
interest on solutions based on the use of time-frequency rep-
resentations was growing [1]-[4]. One of the main reason
is that it allows the possibility to consider a wider class
of source signals rather than the classical one (statistically
independent random source signals). One can distinguish
two main classes of time-frequency representations: the lin-
ear one and the quadratic one. The use of quadratic time-
frequency representations has lead to useful algorithms
based on the joint diagonalization and/or the joint zero di-
agonalization of some particular sets of matrices [2].

One of the first approach [1] proposes to joint diago-
nalize a set of matrices that corresponds to spatial quadratic
time-frequency representations calculated at some time-fre-
quency points. These time-frequency points correspond to
sources auto-terms only (there is no interference between
source signals in such time-frequency points). However, a
first whitening stage is required. Later in [4], it was shown
that this whitening stage can be dropped which leads to
advantages. Indeed better performances are generally ob-
tained and the separation of “correlated” source signals can
be considered.

On the other hand, the approach in [2] proposes to joint
zero-diagonalize a set of matrices that corresponds again to
spatial quadratic time-frequency representations calculated

at some time-frequency points. Now these time-frequency
points correspond only to sources interferences. Again a
first whitening stage is required. Notice that solutions that
combine joint diagonalization and joint zero-diagonalization
were also proposed [3].

In this paper, we propose to generalize the joint zero-
diagonalization approach to the case of non-orthogonal ma-
trices. The proposed algorithm is based on the optimization
of a quadratic criterion. The application of the algorithm to
the source separation problem illustrates the usefulness of
the proposed approach.

Since the proposed developments are based on the use
of Spatial Quadratic Transforms (SQT) of signals and their
properties [6][7][1], let us now briefly recall the important
points related to our utilization.

Considering a real deterministic vectorial signal z(t),
the SQT is given by a matrix Dz(t, ν) =

(
Dzi,zj (t, ν)

)
written as

Dz(t, ν) =
∫

R2
z(θ)zT (θ′)R(θ, θ′; t, ν)dθdθ′ (1)

which is defined component-wise by

Dzi,zj (t, ν) =
∫

R2
zi(θ)zj(θ′)R(θ, θ′; t, ν)dθdθ′ (2)

for all i and j. The diagonal terms of the SQT Dz(t, ν)
are called auto-terms while the off-diagonal ones are called
inter-terms. The function R(θ, θ′; t, ν) which is generally
a complex function is referred to as the kernel of the trans-
form. For physical reasons, this kernel is often constrained
to satisfy the following property

R(θ, θ′; t, ν) = R∗(θ′, θ; t, ν) (3)

where (·)∗ stands for the complex conjugate operator. Then,
the SQT satisfies an hermitian symmetry as

Dz(t, ν) = DH
z (t, ν)
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where (·)H stands for the complex conjugate and transpose
operator.

The auto-terms correspond to the same quadratic trans-
form associated to different scalar deterministic signals. This
quadratic transform is said energetic if its double integral
over t and ν is equal to the energy of the considered signal,
i.e. for a scalar signal z(t) we have

∫ ∫
Dz,z(t, ν)dtdν =∫

z2(t)dt. Such energetic transforms form the basis of di-
verse Time-Frequency Representations (TFR).

2. MODEL, ASSUMPTIONS AND SOLUTIONS

We consider the classical instantaneous blind sources sep-
aration problem where N sources signals are received on
N sensors. In matrix and vector notations, the input/output
relationship of the mixing model reads:

x(t) = As(t) (4)

with A the (N, N) real mixing matrix which is assumed
invertible, x(t) = [x1(t), . . . , xN (t)]T the (N, 1) observa-
tions vector ((·)T denotes the transposition operator) and
s(t) = [s1(t), . . . , sN (t)]T the (N, 1) deterministic real
sources vector.

The problem of blind sources separation consists in the
estimation of a “separating” matrix, say B, which applied
to the observation as

y(t) = Bx(t) (5)

yields an estimation of the source signals.
Defining G = BA as the matrix of the global system,

the source separation problem is solved when one has found
a separating matrix B in such a way that

G = DP (6)

where D is an invertible diagonal matrix which corresponds
to arbitrary attenuations for the restored sources and P is a
permutation matrix which corresponds to an arbitrary order
of restitution of source signals.
Assumption A: Let us consider that we dispose of points in
the time-frequency plane each of them corresponding to an
inter-term and not to an auto-term. In other words, suppose
that there exists couples (tk, νk) such that

Dsi,sj (tk, νk) = (1 − δi,j)Di,j,k (7)

where for all k there exists at least one couple (i, j) such
that Di,j,k �= 0 and δi,j = 1 if i = j and 0 otherwise.

Notice that the above assumption for deterministic sig-
nals plays the role of the classical statistical independence
assumption for random signals. It is clear that a discriminat-
ing property for source signals is always required in order to
think about separation. Here we consider deterministic sig-
nals whose quadratic time-frequency representation do not

overlap too much two by two in the above sense. In other
words the signatures of the sources in the time-frequency
plane are “sufficiently” different to be able to find time-
frequency points satisfying the considered assumption.

3. JOINT ZERO-DIAGONALIZATION

Using (4) and because matrix A is real, it is easy to see that
the SQT Dx(t, ν) of the observation signals vector directly
admits the following decomposition

Dx(t, ν) = ADs(t, ν)AT (8)

where Ds(t, ν) is the SQT of the source signals vector.

Notice that in general the matrix Ds(t, ν) for any t and
ν has no special structure. Nevertheless, there exists some
time-frequency points for which the matrix Ds(t, ν) has a
specific structure. In particular, when assumption A is con-
sidered, Ds(tk, νk) are zero-diagonal. A zero-diagonal ma-
trix being a matrix whose all diagonal components are zero.
Our goal in the following consists in taking into considera-
tion such a property.

Hence, we now briefly describe the problem of joint
zero-diagonalization. Let us consider a set D of Nm matri-
ces Di, i ∈ {1, . . . , Nm} which all admit the following de-
composition: there exists a matrix A and Nm zero-diagonal
matrices Λi, i ∈ {1, . . . , Nm} such that

Di = AΛiAT , ∀i ∈ {1, . . . , Nm} .

The problem consists in estimating the matrix A and the
zero-diagonal matrices Λi, i ∈ {1, . . . , Nm} from the ma-
trices set D.

When A is orthogonal, the above problem have been
reported in e.g. [2] where solutions can be found. For the
non-orthogonal case, we propose to consider the following
objective function

C(B) =
Nm∑
i=1

‖Diag{BT DiB}‖2 (9)

where the operator Diag{·} is defined as the diagonal matrix
built from the diagonal components of the matrix argument.
In fact we are looking for the argument of the minimization
of C(B). In that case, this optimal matrix argument plays
directly the role of a separating matrix. The rationale of this
objective function is to look for a matrix in order to yield
signals whose quadratic time-frequency representations are
zero-diagonal and thus corresponds to source signals.

For the optimization of C(B), let us remark that it can
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be written as

C(B) =
Nm∑
i=1

N∑
�=1

∣∣bT
� Dib�

∣∣2

=
N∑

�=1

bT
�

(
Nm∑
i=1

Dib�bT
� DH

i

)
b�

=
N∑

�=1

bT
� Q�(b�)b� (10)

where b�, � = 1, . . . , N are the column vectors of ma-
trix B, (.)H is the matrix conjugate transpose operator and
Q�(b�) =

∑Nm

i=1 Dib�bT
� DH

i is a quadratic form. Notice
that the minimization of C(B) can be realized column by
column. For a given column, an optimum of the quadratic
form in (10) can be found by calculating the eigenvector of
Q�(b�) associated with the lowest eigenvalues. However
since matrix Q�(b�) for a given � also depends on the vec-
tor b�, it is necessary to consider an iterative procedure. We
propose to consider the following one:

For each �, given b(0)
� an initial unit norm vector

with i ∈ N∗, do (a) and (b)
(a) Calculate Q�(b

(i−1)
� )

(b) Find the lowest eigenvalue λ(i) and the associated
eigenvector b(i)

� of matrix Q�(b
(i−1)
� )

Stop when |λ(i) − λ(i−1)| ≤ ε where ε is a given small
positive threshold.

4. COMPUTER SIMULATIONS

We consider N = 3 real synthetic source signals of 128
time samples. The first one is a sinusoïdal signal, the sec-
ond one is a sinusoidal frequency modulation signal and
the third one is a linear frequency modulation signal. In
these simulations, the Spatial Pseudo Wigner-Ville (SPWV,
[6][7]) representation is used. The real part (resp. the imag-
inary part) of the source SPWV, i.e. DPWV,s(t, ν) is given
on the top (resp. the bottom) of Fig. 1. Notice that it is
computed over 64 frequency bins and with a Hamming win-
dow of length 33. One can observe that the diagonal terms
of the SPWV are real to the extent that they correspond to
the quadratic time-frequency representations of each of the
3 sources and because the kernel of the used SQTFR ex-
hibits hermitian symmetry. With regard to the off-diagonal
terms, they are complex: they correspond to the bilinear
time-frequency representations of couples of different sour-
ces.

These source signals are mixed by the following mixing
matrix:

A =

⎛
⎝ 1 0.9 −0.5

0.3 1 0.4
0.2 0.1 1

⎞
⎠ .
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Fig. 1. Top: the real part of the SPWV of the sources vector,
bottom: its imaginary part

Hence we consider that they are received on M = 3 sensors.
The real part of the observation SPWV, i.e. DPWV,x(t, ν) is
given on Fig. 2

The used time-frequency points are displayed on Fig. 3
with a “plus”. On the left, time-frequency points are those
which are used for the building of a set of matrices to be
joint-diagonalized. For an easier interpretation they are su-
perimposed with the trace of the source SPWV. On the right,
time-frequency points are those which are used for the build-
ing of a set of matrices to be joint zero-diagonalized. For an
easier interpretation they are superimposed with the sum of
the off-diagonal terms of the source SPWV. All those points
have been obtained in an automatic mode using the selec-
tion procedures already proposed in [3] and [4]. They have
led to the selection of 683 matrices to be joint-diagonalized
and 987 to be joint zero-diagonalized.
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Fig. 2. The real part of the SPWV of the observations.
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Fig. 3. The time-frequency points selected in an automatic mode.
They are represented by a “+”. Left: time-frequency points
used for joint-diagonalization superimposed on the trace of the
sources SPWV, right: time-frequency points used for joint zero-
diagonalization superimposed on the sum of the off-diagonal terms
of the sources SPWV.

We compare our proposed algorithm denoted by JZDNO

with the unitary joint zero-diagonalization (JZD) algorithm
proposed in [2] using the same set of 987 matrices. We
also compare it with the non unitary joint-diagonalization
(JDNO) algorithm proposed in [4] and with the unitary joint-
diagonalization (JD) algorithm proposed in [1] using the
same set of 683 matrices.

To evaluate the performances of the separating algo-
rithms we use the performance index I proposed in [5]. This
index is given in dB defined by I dB = 10 log(I). The re-
sulting performances indexes are summed up in Table 1.

It is clear with the sight of these results, that in this case,
the proposed non orthogonal joint zero-diagonalization me-
thod performs better than the others, and, more generally,
that non orthogonal methods perform better than orthogonal
ones.

Method Performances (dB)

JZDN0 -40.94
JDN0 -35.55

JZD -27.86
JD -27.77

Table 1. A comparison of the performance indexes reached
thanks to JD and JDNO performed on the same set of 683
time-frequency matrices and thanks to JZD and JZDNO per-
formed on the same set of 987 time-frequency matrices.

5. DISCUSSION & CONCLUSION

In this paper, we have shown that blind sources separation
based on spatial quadratic time-frequency representations
can be performed without a preliminary whitening stage of
the observations. To that aim, we propose a non-orthogonal
joint zero-diagonalization procedure. One of the main ad-
vantage of such an approach is to apply even to potentially
correlated sources.
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