
OPTIMAL ALIGNMENT ALGORITHM FOR CONTEXT-SENSITIVE HIDDEN MARKOV
MODELS

Byung-Jun Yoon and P. P. Vaidyanathan

Dept. of Electrical Engineering
California Institute of Technology, Pasadena, CA 91125, USA
E-mail: bjyoon@caltech.edu, ppvnath@systems.caltech.edu

ABSTRACT

The hidden Markov model is well-known for its efficiency in mod-
eling short-term dependencies between adjacent samples. How-
ever, it cannot be used for modeling longer-range interactions be-
tween symbols that are distant from each other. In this paper, we
introduce the concept of context-sensitive HMM that is capable
of modeling strong pairwise correlations between distant symbols.
Based on this model, we propose a polynomial-time algorithm that
can be used for finding the optimal state sequence of an observed
symbol string. The proposed model is especially useful in model-
ing palindromes, which has an important application in RNA sec-
ondary structure analysis.

1. INTRODUCTION

The hidden Markov model (HMM) has been widely used in many
areas due to its efficiency in modeling short-term dependencies be-
tween adjacent samples. Traditionally, HMMs have been success-
fully applied to speech recognition [1], and many speech recog-
nition systems are built upon HMMs and their variants. More re-
cently, HMMs have become also very popular in computational
biology. They have been proven to be useful in various problems
such as gene identification [2, 3, 4], multiple sequence alignment
[4, 5], and so forth.

Despite its many advantages, the HMM has also some limita-
tions. For example, even though it can efficiently model sequences
with strong correlation between adjacent samples, it cannot rep-
resent longer-range interactions between samples that are distant
from each other. Therefore, the resulting structure is always linear,
or sequential, and more complex structures with non-sequential
dependencies cannot be effectively generated.

According to the Chomsky hierarchy of transformational gram-
mars [7], HMMs can be viewed as the stochastic version of the so-
called regular grammars. There are four classes in the Chomsky
hierarchy as shown in Fig. 1. The regular grammars are the sim-
plest among the four, and they have the most restricted structure,
or production rules. However, due to these restrictions, they have
efficient algorithms such as the Viterbi’s algorithm [1] for finding
the optimal state sequence, and Baum-Welch algorithm [8] for re-
estimation of the model parameters. Other transformational gram-
mars have less restrictions in their production rules, hence they
have more descriptional power to represent complex structures.

Work supported in part by the ONR grant N00014-99-1-1002 and by
the NSF grant CCF-0428326, USA.

regular

unrestricted

context-free

context-sensitive

• more complex
 and powerful
• less restricted

Fig. 1. The Chomsky hierarchy of transformational grammars
nested according to the restrictions on their production rules.

However, the computational complexity for parsing the observa-
tion sequence increases very quickly, which sometimes makes the
use of higher level grammars impractical.

Two classic examples of languages that cannot be modeled us-
ing the regular grammars - or equivalently, using HMMs - are the
palindrome language and the copy language [7]. The palindrome
language includes all sequences that read the same forwards and
backwards. The copy language includes all sequences that con-
sists of the concatenation of two identical sequences. Examples of
these languages are shown in Fig. 2. The lines in Fig. 2 that con-
nect two symbols indicate the correlation between those symbols
which are located distantly from each other. This kind of longer-
range interactions between symbols cannot be modeled using reg-
ular grammars. It is of course possible that a regular grammar gen-
erates such a palindromic sequence as part of its language. How-
ever, it is not capable of generating only such palindromes, thus
not able to effectively differentiate palindromic sequences from
non-palindromic ones. In order to simulate such languages, we
have to use higher level grammars than the regular grammars in
the Chomsky hierarchy. For example, palindromes can be gen-
erated by context-free grammars, and we need context-sensitive
grammars to represent the copy language.

(a)

(b)

ABCDDCBA

ABCDABCD

Fig. 2. Examples of (a) palindrome language and (b) copy lan-
guage. The lines show the correlations between distant symbols.

IV - 2930-7803-8874-7/05/$20.00 ©2005 IEEE ICASSP 2005

➠ ➡

In this paper, we introduce the concept of context-sensitive
HMMs that are capable of modeling longer-range correlations be-
tween distant symbols. This model equips some of the states with
auxiliary memory elements that store part of the past output sym-
bols, which serve as the context of the system. This context affects
the emission probabilities as well as the transition probabilities of
the HMM, which enables the model generate palindromes, repeti-
tive sequences, and so forth.

One important application of context-sensitive HMMs is the
RNA secondary structure analysis. It is known that many inter-
esting RNAs conserve their secondary structures as well as their
primary sequences [4, 6]. These RNAs display complex interac-
tions between bases that are distant from each other, and many of
them resemble palindromes. The proposed model can be applied
for identifying these secondary structures.

2. CONTEXT-SENSITIVE HMM

The proposed model consists of three kinds of states, namely, Sn,
Pn and Cn. Sn are single-emission states, which are exactly the
same as the states used in traditional HMMs. Pn are pairwise-
emission states and Cn are context-sensitive states. These two
states always exist in pairs. Each (Pn, Cn) pair has an auxiliary
memory dedicated to it, such as a stack or a queue. These two
states access the same memory element, and the data stored in this
memory serves as the context of the system, which decides the
transition probabilities and the emission probabilities of the HMM.

The differences between these three states are as follows. In a
single-emission state, a symbol is emitted according to the emis-
sion probabilities of the state Sn. After the emission, a transition is
made from Sn to another state, following the transition probabil-
ities associated with Sn. In a pairwise-emission state, everything
is the same as in single-emission states, except that the emitted
symbol is stored in the associated memory element before making
a transition to the next state. Now, let us consider the context-
sensitive states. In a context-sensitive state Cn, the emission prob-
abilities and the transition probabilities are affected by the data
that is stored in the associated memory. When entering Cn, this
memory element is accessed and one symbol is pulled out. Let
us denote this symbol as x. Once the symbol x is retrieved, the
emission probabilities are adjusted according to x. For example,
the emission probabilities may be adjusted such that the state emits
the same symbol x with high probability (possibly, with probabil-
ity one). Another peculiarity of the context-sensitive state Cn is
the fact that the associated memory element is examined before
any state attempts to make a transition to it. If the memory is
empty, transition to Cn is not allowed, and it is forced to make a
transition to another state. This is done by setting the transition
probability to Cn to zero, and adjusting the remaining probabili-
ties correspondingly. This is necessary to maintain the number of
Pn states the same as that of Cn states.

Based on this model, we can easily construct HMMs that gen-
erate only palindromic sequences. One possible example is shown
in Fig. 3. In this model, the pair (P1, C1) is associated with a
stack. The model begins at the pairwise-emission state P1. The
state emits symbols according to its emission probabilities, and
the emitted symbols are pushed onto the stack. After making sev-
eral self-transitions, it finally moves to the context-sensitive state
C1. We adjust the emission probabilities and the transition proba-
bilities of C1 such that it always emits the symbol on the top of the
stack and makes self-transitions while there are symbols left in the

P1 C1

Stack 1

X
1

X
2

X
3

Start End

push pop

Fig. 3. An example of a context-sensitive HMM that generates
palindromes.

stack. In this way, C1 will emit the same symbols as were emitted
by P1, but in the reverse order. Therefore, the generated string will
be always a palindrome. Similarly, we can replace the stack in Fig.
3 by a queue1 to simulate a copy language. In this case, C1 will
emit the same symbols as the ones emitted by P1, but this time, in
the same order.

3. FINDING THE MOST PROBABLE PATH

Now, let us focus on the case when all the memory elements that
are associated with the (Pn, Cn) pairs are stacks. Moreover, we
will restrict the pairwise interactions to be nested as shown in Fig.
2 (a). Therefore, crossing interactions that are shown in Fig. 2
(b) will not be allowed. One important question in HMMs is the
following. Given an observed symbol string, what is the optimal
state sequence, or path, that is most probable? If there are M states
and the length of the sequence is L, we have ML different paths.
Of course, this includes also many infeasible paths, and the actual
number of all feasible paths depends on the particular structure of
the HMM.

One way to find the most probable path would be to com-
pute the probabilities of all paths, and pick the one with the high-
est probability. However, as the sequence becomes longer, this
becomes quickly infeasible, since the number of paths increases
exponentially with L. In regular HMMs, this problem can be
solved efficiently by using the Viterbi’s algorithm [1]. Let us con-
sider a sequence of symbols x1x2 · · ·xL and denote the underly-
ing state of xi as si. The Viterbi’s algorithm exploits the fact that
if s1 · · · sn−1sn is the optimal path for x1 · · ·xn−1xn among all
paths that end with the state sn, then s1 · · · sn−1 must be the op-
timal path for x1 · · ·xn−1 among all paths that end with the state
sn−1. Therefore, in order to find the optimal path for x1 · · ·xn

with sn = m, we only have to consider the M optimal paths
for x1 · · ·xn−1 that end with sn−1 = 1, . . . , M , the transition
probability from each of these states to the state sn = m, and
the probability of emitting the symbol xn at the state sn. This
makes the computational complexity of the Viterbi’s algorithm
only O(LM2), which is much better than O(ML).

Unfortunately, the same intuition does not hold for context-
sensitive HMMs. Since the emission probabilities and the tran-
sition probabilities of context-sensitive states Cn depend on the
previously emitted symbols at the pairwise-emission states Pn,
we have to keep track of the previous states in order to compute

1Note that a queue is a first-in-first-out (FIFO) system, whereas a stack
is a last-in-first-out (LIFO) system.

IV - 294

➡ ➡

P1 C1Start EndS1

0.5

Stack 1

0.5

pA= 0.5
pB= 0.5

0.5 0.5

pA= 0.25
pB= 0.75

if Stack 1
is empty

if Stack 1
isn’t empty

Fig. 4. An example of a simple context-sensitive HMM. This
shows that the traditional Viterbi’s algorithm cannot be used for
finding the most probable path in context-sensitive HMMs.

the probability of a certain path. Therefore, the optimal path for
x1 · · ·xn cannot be found simply by considering the optimal paths
for x1 · · ·xn−1 and extending it.

In order to see this, let us consider the example shown in
Fig. 4. This context-sensitive HMM has three states P1, C1 and
S1. The emission probabilities and the transition probabilities of
P1 and S1 are shown in the figure. At the context-sensitive state
C1, a symbol is popped from the stack and emitted. After the
emission, the stack is examined to check whether it is empty. If it
is empty, the system stops. Otherwise, it makes a self-transition to
C1 and continues. Now, let us consider the sequence ABBBA.
Assuming that this string comes from the model in Fig. 4, what is
the most probable path π∗? It is not difficult to see that there are
two feasible paths: π1 = P1S1S1S1C1 and π2 = P1P1S1C1C1.
Since both paths pass the state S1 in the middle, let us first consider
the optimal path for the first three symbols ABB. Let us denote
the sub-paths of π1 and π2 up to the third symbol as π̂1 = P1S1S1

and π̂2 = P1P1S1, respectively. If we compute the probabilities
of π̂1 and π̂2, we get

P (π̂1) =
9

128
, P (π̂2) =

6

128
, (1)

hence the optimal path for the first three symbols ABB is π̂1.
However, if we compute the probabilities of the two paths π1 and
π2, we obtain

P (π1) =
27

2048
, P (π2) =

48

2048
, (2)

which shows that the optimal path for ABBBA is π2. Appar-
ently, the globally optimal path π∗ = π2 is not an extension of
π̂1, and this clearly demonstrates that the Viterbi’s algorithm can-
not be used for finding the most probable path in context-sensitive
HMMs.

4. POLYNOMIAL TIME ALGORITHM FOR OPTIMAL
ALIGNMENT

Since the number of paths increases exponentially with the length
of the sequence, without an efficient algorithm for finding the most
probable path, the context-sensitive HMM may not be of much
practical value. In this section, we introduce a systematic algo-
rithm for finding the optimal alignment between the observed sym-
bol string and the given model. The proposed algorithm is concep-
tually similar to the Cocke-Younger-Kasami algorithm [9] that is
used for parsing stochastic context-free grammars (SCFGs). It will

be shown later that the computational complexity of the proposed
algorithm is lower than that of the CYK algorithm.

Let us first define the variables that are needed in the algo-
rithm. Let x = x1x2...xL be the observed symbol string, where L
is the length of the string. We assume that there are M states in the
context-sensitive HMM, which we simply denote by 1, 2, . . . , M .
We assume that there are N pairs (Pn, Cn) of pairwise-emission
states and context-sensitive states, where a separate stack is dedi-
cated to each. These 2N states are included in the set of M states
{1, . . . , M}. It is assumed that all pairwise interactions between
Pn and Cn are nested and do not cross each other. Let us also
define the sets P = {P1, . . . , PN}, C = {C1, . . . , CN} and
R = {(P1, C1), . . . , (PN , CN)} for notational convenience. We
denote the transition probability from state v to w as t(v, w), and
the emission probability of a symbol x at a state v as e(x|v). Now,
let us define the variable γ(i, j, v, w) which is the log-probability
of the optimal path among all paths si · · · sj with si = v and
sj = w, where all pairwise-emission states Pn are paired with the
corresponding context-sensitive state Cn inside the path. This will
ultimately lead to the log-probability log P (x, π∗|Θ) of the opti-
mal path π∗, where Θ is the set of model parameters. Finally, we
define the variable λ(i, j, v, w) that will be used for tracing back
the optimal path.

4.1. Computing the log-probability of the optimal path

The optimal alignment algorithm is defined as follows.

Initialization

For i = 1, . . . , L, v = 1, . . . , M .

γ(i, i, v, v) =

j
log e(xi|v) v /∈ P, C
−∞ otherwise

λ(i, i, v, v) = (0, 0, 0, 0)

Iteration

For i = 1, . . . , L − 1, j = i + 1, . . . , L and v = 1, . . . , M, w =
1, . . . , M .

(i) v = Pn, w = Cm(n �= m), or v ∈ C or w ∈ P
γ(i, j, v, w) = −∞
λ(i, j, v, w) = (0, 0, 0, 0)

(ii) (v, w) ∈ R, j = i + 1

γ(i, j, v, w) = log e(xi|v) + log t(v, w) + log e(xj |w)

λ(i, j, v, w) = (0, 0, 0, 0)

(iii) (v, w) ∈ R, j �= i + 1

γ(i, j, v, w) = max
u1,u2

h
log e(xi|v) + log t(v, u1)

+γ(i + 1, j − 1, u1, u2) + log t(u2, w) + log e(xj |w)
i

(u∗
1, u

∗
2) = arg max

(u1,u2)

h
log e(xi|v) + log t(v, u1)

+γ(i + 1, j − 1, u1, u2) + log t(u2, w) + log e(xj |w)
i

λ(i, j, v, w) = (i + 1, j − 1, u∗
1, u

∗
2)

IV - 295

➡ ➡

(iv) v ∈ P, w /∈ C

γ(i, j, v, w) = max
u

h
γ(i, j − 1, v, u)

+ log t(u, w) + log e(xj |w)
i

u∗ = arg max
u

h
γ(i, j − 1, v, u)

+ log t(u, w) + log e(xj |w)
i

λ(i, j, v, w) = (i, j − 1, v, u∗)

(v) v /∈ P, w ∈ C

γ(i, j, v, w) = max
u

h
log e(xi|v) + log t(v, u)

+γ(i + 1, j, u, w)
i

u∗ = arg max
u

h
log e(xi|v) + log t(v, u)

+γ(i + 1, j, u, w)
i

λ(i, j, v, w) = (i + 1, j, u∗, w)

(vi) v /∈ P, w /∈ C

In this case, the variables γ(i, j, v, w) and λ(i, j, v, w) can be up-
dated using any of the update formulae in (iii)∼(v).

Termination

log P (x, π∗|Θ) = max
v,w

h
log t(0, v) + γ(1, L, v, w)

+ log t(w, 0)
i

(v∗, w∗) = arg max
(v,w)

h
log t(0, v) + γ(1, L, v, w)

+ log t(w, 0)
i

λ∗ = (1, L, v∗, w∗) �

The proposed algorithm starts from the inside of the observation
sequence, and proceeds to the outward direction, to find the op-
timal path iteratively. It should be noted that every-time there is
an interaction between si and sj , they are considered at the same
time as shown in (ii) and (iii) of the iteration step. This informs us
of the symbol xi that was emitted by Pn, hence we can adjust the
probabilities of the corresponding state Cn according to this value.

4.2. Trace-back

Let us define λk = (ik, jk, vk, wk). We also need two stacks
T�, Tr for trace-back. The optimal path is traced back as follows.

Initialization

Let k = 0. Initialize λ0 = λ∗ = (1, L, v∗, w∗).

Iteration

λk+1 ⇐= λ(λk) = λ(ik, jk, vk, wk)

If ik+1 �= ik then push vk onto stack T�.

If jk+1 �= jk then push wk onto stack Tr .

If λk+1 = (0, 0, 0, 0) goto the termination step.

Otherwise, increment k and repeat the iteration step.

Termination

Pop v from T� and push it onto Tr until T� becomes empty.

Initialize π∗ = φ (null string).

Pop v from Tr and append it to the right of π∗.

Repeat until Tr becomes empty. �
At the end of this procedure, we get the most probable path π∗. It is
not difficult to see that the computational complexity of the align-
ment algorithm is O(L2M3), which is much better than O(ML)
of the exhaustive search, and also smaller than the complexity
O(L3M3) of the CYK algorithm for general SCFGs.

5. CONCLUDING REMARKS

In this paper, we proposed the concept of context-sensitive HMMs
that can be used for modeling pairwise interactions between dis-
tant symbols. The proposed model has a greater descriptive power
than the traditional HMMs. For example, it can be used for mod-
eling palindromic languages, copy languages, and so forth. The
proposed model can be used for modeling RNA secondary struc-
tures, since many interesting RNAs look like palindromes [4, 6].
SCFGs have been used for modeling RNAs [4, 6], and we may use
context-sensitive HMMs instead [10], instead of SCFGs. This is a
topic for future research.

6. REFERENCES

[1] L. R. Rabiner, “A tutorial on hidden Markov models and se-
lected applications in speech recognition”, Proceedings of
the IEEE 77 (1989) 257-286.

[2] A. Krogh, I. Saira Mian, D. Haussler, “A hidden Markov
model that finds genes in E. coli DNA”, Nucleic Acids Res.
22 (1994) 4768-4778.

[3] S. L. Salzberg, A. L. Delcher, S. Kasif, O. White, “Micro-
bial gene identification using interpolated Markov models”,
Nucleic Acids Res. 26 (2) (1998) 544-548.

[4] R. Durbin, S. Eddy, A. Krogh, and G. Mitchison, Biological
sequence analysis, Cambridge Univ. Press, Cambridge, UK,
1998.

[5] S. R. Eddy, “Multiple alignment using hidden Markov mod-
els”, Proceedings of the Third International Converence on
Intelligent Systems for Molecular Biology (1995) 112-120.

[6] S. R. Eddy, “Computational genomics of noncoding RNA
genes”, Cell 109 (2) (2002) 137-40.

[7] N. Chomsky, “On certain formal properties of grammars”,
Information and Control (2) (1959) 137-167.

[8] L. E. Baum, “An equality and associated maximization tech-
nique in statistical estimation for probabilistic functions of
Markov processes”, Inequalities (3) (1972) 1-8.

[9] M. A. Harrison, Introduction to formal language theory,
Addison-Wesley, 1978.

[10] Byung-Jun Yoon and P. P. Vaidyanathan, “HMM with auxil-
iary memory: a new tool for modeling RNA secondary struc-
tures”, Proc. 28th Asilomar Conference on Signals, Systems,
and Computers, Monterey, CA, Nov. 2004.

IV - 296

➡ ➠

