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Abstract— 1 It has been well established by now that high-speed
wireline traffic exhibits self-similar behavior. Several studies in the
past have hypothesized that wireless traffic is also self-similar but
without adequate justification. In this paper we study the propagation
of self-similarity as self-similar wireline traffic feeds to a gateway that
interconnects a wireline to a wireless network. We model the wireline
traffic as an On/Off process. We propose models for buffering and
repacking performed at the gateway. Based on those models and also
statistical models for the wireless channel, we study the statistics of
the outgoing On/Off traffic. We show that when the On and Off state
durations of the input traffic are both heavy-tail distributed, such as in
the case of LAN traffic, the outgoing traffic is self-similar. On the other
hand, if the On state durations are heavy-tail distributed but the Off
state durations have finite variance, such as in variable-bit-rate video
traffic, the self-similarity maybe disappear if the gateway has a buffer
much larger than the maximum channel capacity and it operates under
an energy conserving protocol.

I. INTRODUCTION

With the increasing demands for wireless Internet access and the
fast evolution of wireless techniques, various high-speed multimedia
services will soon be provided via wireless networks. Statistical
modeling of traffic is of great importance in network engineering,
and a substantial body of literature has been devoted to it.

Over the past decade, a number of empirical studies have con-
vincingly demonstrated that wireline network traffic generated by
multimedia applications exhibits burstiness over a wide range of
timescales [10] and is long-range dependent, or self-similar. Several
model for wireline traffic have been proposed [10], [12], [13].

As of recently, there has been works suggesting that wireless traffic
might also self-similar [16], [9] simply as an extension of the wireline
traffic behavior. However, there are big differences between wired and
wireless transmission, as the effectiveness of the latter is restricted by
wireless channel impairments, and power limitations of the wireless
transmitters/receivers.

To study the extent to which the wireline traffic statistical char-
acteristics propagate in the wireless traffic, we here study the role
of the gateway that interconnects wireline and wireless networks. In
general, packet sizes are different over a heterogeneous collection
of networks, and the gateway provides a means by which packets
are fragmented and reassembled [8]. Since energy consumption of
portable wireless terminals (e.g. PDA and laptops) is a limiting factor
in the services these devices can provide, we here consider an energy
conserving gateway protocol, that targets at reducing the amount of
time a mobile node needs to have its receiver on. Our study also
takes into account the wireless channel modeled by the two-state
Markovian model of [5]. In [14] we considered the problem for the
case of a gateway behaving as a small buffer system (i.e., the buffer
can hold at most one packet). We here add to that work by considering
a gateway that behaves like a large buffer system (i.e., the buffer size
is much larger than the service rate), and also a buffer system that
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alternates between two different service rates, which is close to a
practical system.

II. BACKGROUND

The Pareto survival function equals:

F̄ (x; α, K) = P (X ≥ x) =

⎧⎪⎪⎨
⎪⎪⎩

(K
x

)α,
x ≥ K,

1,
x < K,

(1)

where K is a positive constant and α is the tail index with 1 < α < 2.
The On/Off process is used to model traffic generated by a single

user. The overall network traffic can be viewed as superposition of
On/Off processes. The On/Off process alternates between two states:
the On, during which the source generates traffic at a rate Aj , and the
Off, during which the source remains silent. Let Xj and Yj denote the
duration of the j-th On and Off state, respectively. In most On/Off-
type models, each of the Xj , Yj are assumed to be independent
identically distributed (i.i.d.) according to a heavy-tail distribution
with infinite variance (e.g. Pareto distribution), or have finite variance
[10].

The Hurst parameter of the On/Off process equals [11]: H = 1
2
(3−

min(α0, α1) where α1, α0 are the tail indices of the On and Off
durations, respectively. If the On or Off durations have finite variance
then the corresponding tail index is taken as 2 when calculating H
[10]. The On/Off process is self-similar if the corresponding Hurst
parameter satisfies: 1/2 < H < 1. This implies that at least one
of the On or Off durations has to be heavy-tail distributed for the
On/Off process to be self-similar.

III. SYSTEM MODEL

Modelling of incoming wireline traffic: The incoming traffic, S(t), is
modelled as a rate-limited EAFRP; this model was proposed and
validated in [13]. Its On/Off durations, denoted here by Xj , Yj

are Pareto distributed according to F̄ (x; α1, K1) and F̄ (x; α0, K0),
respectively. The On rates, Aj , are i.i.d. cut-off Pareto distrib-
uted with survival function: F̄L(x; αA, KA) = P (X ≥ x) =
F̄ (x; αA, KA)(1 − u(x − L)) where u(.) is the unit step function;
L represents the rate limit imposed by competing media; and 1 <
αA < 2 [13]. The Hurst parameter of such traffic is within (0.5,1),
thus the traffic is self-similar.
The wireless channel model: We follow the two-state Markovian
process of [5], in which the channel strictly alternates between good
and bad states, with corresponding service rates: cg and cb. The
durations of both state are independent exponentially distributed with
means 1/β and 1/γ, respectively. We further assume that the channel
is slowly varying, so that the alternation of channel states is relatively
slow compared with that of the incoming traffic S(n). In other words,
the service rate of the gateway can be assumed to be constant within
several On /Off periods of S(n).
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The gateway model: Traffic streams from one or more connections
feed into a buffer. Let us assume that the service time is slotted, with
time slot denoted by τ . In the sequel, we will use the notation S(n),
T (n) instead of S(t), T (t), where n is the slot index. During each
time slot, at most one packet can leave buffer. Since the incoming
traffic is assumed to be a continuous bit flow, the server needs
to repack bits into equal-sized packets and send them out via the
wireless channel. For the packing operation, we here consider the
following energy conserving model: if the data in the buffer are less
than the packet size, the server takes no action and waits until there
are enough data to form a packet. The output traffic T (n), and instant
buffer content Q(n) equal:

T (n) =

⎧⎪⎪⎨
⎪⎪⎩

c,
if S(n) + Q(n − 1) ≥ c

0,
if S(n) + Q(n − 1) < c

(2)

Q(n) =

⎧⎪⎪⎨
⎪⎪⎩

< S(n) + Q(n − 1) − c, 0 > ∧B,
if S(n) + Q(n − 1) ≥ c

< S(n) + Q(n − 1), 0 > ∧B,
if S(n) + Q(n − 1) < c

(3)

where < α, β >= max(α, β) and α ∧ β = min(α, β).

IV. THE IMPACT OF THE BUFFERING SYSTEM ON THE DEGREE

OF SELF-SIMILARITY

Let us view the output traffic T (n) (wireless traffic) as an On/Off
process, in the sense that it alternates between non-zero and zero-
values. Let XS

j /Y S
j denote the On/Off durations of S(n), and

XT
j /Y T

j , the On/Off durations of T (n). In this section, we will derive
the complementary distribution function (CDF) of XT

j and Y T
j based

on the assumed statistics of S(n). For mathematical tractability we
assume that the durations are i.i.d., thus the index j will be dropped.

We will first consider the propagation of self-similarity through
a buffering system with constant service rate. For mathematical
simplicity in the sequel we only study two extreme cases: the small
buffer system (B = c) and large buffer system (B � c). If B > c
but B takes moderate values, the mathematic analysis is rather
intractable. However, our simulations indicate that if B > 5c the
corresponding buffering system acts more like a large buffer system,
in which case the analysis shown next still applies.

Then, we will study the gateway by multiplexing the two afore-
mentioned buffering systems.
The small buffer system: For this system the buffer can hold up to
one packet. During all Off periods of S(n), it holds that Q(n) =
Q(n − 1) < c and so T (n) = 0, i.e., T (n) is in Off state. During
the On periods of S(n), as new bits come into the buffer, the buffer
content is updated according to (3), and thus T (n) changes according
to (2). The buffer system does not keep one-to-one mapping between
XS and XT , Y S and Y T .

Let us make the assumptions: (A1) The minimum rate during an
On period of the incoming traffic, i.e., KA, satisfies KA << c. It can
be shown that this assumption can be satisfied by a light traffic load
[15]. (A2) We ignore the previous buffer content, Q(n − 1) when
calculating T (n) by eq. (2). This approximation is made mainly for
mathematical convenience; in the simulations section of [14], we have
provided simulation results to confirm its validity.

Proposition 1: For the small buffer system with assumption (A1)
(A2), the tail exponent of XT is the same as that of XS . The survival
function of Y T is asymptotically power-law with tail exponent
min{α1, α0}.

Proof: The proof concerning XT was given in [14]. An expression
for the CDF of Y T was also given in [14]. Here, using properties of
Pereto distributions [1], we can show that for the CDF expression it
holds: P (Y T > y)

y→∞∼ y−min{α1,α0} (see also [15]).
The large buffer system: In this case the buffer can hold more than
one packet. Now, since B � c, the previous buffer content Q(n−1)
can take very large values and thus cannot be ignored. In this case,
T (n) can be in the On state even when the rate of the incoming On
state is A < c.

The CDFs of XT and Y T can be calculated by applying the total
probability theorem as follows:

P (XT > x) = P (XT > x|A ≥ c)P (A ≥ c)

+P (XT > x|A < c)P (A < c) (4)

P (Y T > y) = P (Y T > y|A ≥ c)P (A ≥ c)

+P (Y T > y|A < c)P (A < c) (5)

Let Sj denote the value of S(n) at the so-called regenerative points
[2]. Those points correspond to the onset of the j-th On period, i.e.,
Sj =

∑j−1
i=1 XS

i + Y S
i .

In addition to assumption (A1), we will also assume that: (A3) The
queue is stable, which implies that c > E[S(n)] = µAµ1

µ1+µ0
where µA,

µ1, µ0 are the means of On state rate, On/Off durations respectively.
Under (A3), the stationary distribution of Q(Sj) is defined as: Qe

d
=

lim
n→∞

Q(Sj) where
d
= represents equality in distribution. (A4) For a

real queue, it always holds that L > c, otherwise the queue would
not be filled and the system would work in an inefficient way.

Proposition 2: For the large buffer system with assumption
(A1)(A3)(A4), Y T has nearly the same tail index as Y S , while XT

is asymptotically power-low decaying with tail exponent (α1 + 1),
where α1 is the tail exponent of XS .

Proof: See Appendix A.

A. The buffering system serving the wireless channel

We here approximate the gateway’s action as statistical multiplex-
ing of two buffering systems that have the same buffer of size B, but
serve at two different rates: cg and cb.

The CDFs of XT and Y T can be calculated via the total probability
theorem as,

P (XT > x) = P (XT > x | c = cg)P (c = cg)

+P (XT > x | c = cb)P (c = cb) (6)

P (Y T > y) = P (Y T > y | c = cg)P (c = cg)

+P (Y T > y | c = cb)P (c = cb) (7)

If B = c we have a small buffer system, while if B � c we have a
large buffer system; here c can be cg , or cb. So the conditional CDFs
(e.g. P (XT > x | c = cg)) can be calculated accordingly.

For the incoming traffic we assumed that 1 < α1 < 2 and 1 <
α0 < 2. Then, based on the previous analysis, it holds:

P (XT > x) = (
K1

x
)α1P (c = cg) + C2x

−(α1+1)P (c = cb)

x→∞∼
[
Kα1

1 P (c = cg)
]
x−α1 (8)

where P (c = cg) = γ
β+γ

, P (c = cb) = β
β+γ

and 1/β, 1/γ are
mean durations of good and bad states. Thus, the On states will be
heavy-tailed with index α1 < 2.

Similarly, Y T will also be heavy-tailed, i.e.,

P (Y T > y) ∼ y−min{α1,α0}P (c = cg) + y−α0P (c = cb)
y→∞∼ y−min{α1,α0} (9)
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Since the tail indices of both On and Off durations are in (1, 2), the
Hurst parameter of T (n) is in (0.5, 1), thus T (n) is self-similar.
Remark: The above results were based on the assumptions that the
tail indices of the incoming On and Off durations were both less
than 2. This is the behavior that we saw in our experimental study
in [13] that involved LAN traffic. However, for an On/Off process
to be self-similar it suffices that either the On or the Off durations,
are heavy-tailed [10], [3]. In [6], variable-bit-rate (VBR) video traffic
was modeled as an On/Off process with heavy-tail On state durations
and Off state durations with finite variance. It can be shown [15] that
Proposition 2 still holds in this case. For an alternating buffering
system with cg > cb and B >> cg , the gateway is always under
large buffer model and thus the tail index of the On states of T (n)
will become greater than 2, and the Off states will maintain their finite
variance. As a result, the Hurst parameter will no longer be in the
(0.5, 1) range, therefore the outgoing traffic will not be self-similar.

V. SIMULATION RESULTS AND ANALYSIS

We here provide simulation results to validate the claim that the
gateway can change the statistics of the On /Off periods of the rate-
limited EAFRP.

We first generated incoming traffic S(n) as follows. We took
XS ∼ F̄ (x; α1 = 1.6, K1 = 1) and Y S ∼ F̄ (x; α0 = 1.4, K0 =
1), A ∼ F̄104.64(x; α = 1.19, K = 48). The time unit τ was taken
to be τ = 0.001sec. The wireless channel was taken to alternate
between the two states cg and cb. The channel states durations
were taken to be independently exponentially distributed with mean
1/β = 0.1sec for the good state, and 1/γ = 0.0333sec for the bad
state. We considered packet size P = 1, 270 (bits/ time slot) with
c = 1, 200 information bits inside, which corresponds to a overall
rate or 1.27Mbps. In the sequel we only consider information bits
rather than total bits. The packet is fragmented into 10 blocks each of
which has 127 bits and is coded by the BCH(k, n) code, where k, n
are the sizes of code word and payload respectively. By setting the
BER to 10−6 for the good channel state, and 0.01 for the bad channel
state, and following the steps of [5] we get cg = 1, 200 (information
bits/time slot) and cb = 290 (information bits/time slot).

We consider a buffer system with buffer size B = 1, 200 bits.
During good channel states the buffering system satisfies (B =
1, 200) = (c = 1, 200), which corresponds to a small buffer system.
During the bad channel states the system satisfies (B = 1, 200) �
(c = 290), which corresponds to a large buffer system.

First we pass S(n) through the gateway serving at a rate of 290
(large buffer model). According to Proposition 2, the tail exponent
of XT should be α1 + 1 = 2.6, while that of Y T does not change.
Figure 1 shows the log-log complementary distribution (LLCD) of
On /Off durations of T (n) (solid line) and S(n) (dashed line). The
tail index of each graph is also shown in the figure, confirming our
expectations.

Next, we pass S(n) through the buffering system that serves
alternatively at rates 1, 200 and 290. The LLCDs of XT /Y T (solid
line), and XS/Y S (dashed line) are plotted in Fig. 2. The tail index
of XT and Y T were estimated to be αXT = α1 = 1.6, and
αYT = α1 = 1.4, respectively, which match the analysis. The Hurst
parameter of T (n) is H = 0.8, which implies self-similarity. This
can also be confirmed by looking at the normalized variance-time
plot [7] of T (n) in Fig. 3; its slope of 2H −2 = −0.4 indicates that
the output traffic is self-similar.

To verify the Remark of Section IV-A, we did the following
simulations. We regenerate the input traffic, denoted by S1(n), as
before but with α0 = 2.2 (i.e. XS are heavy-tailed and Y S have

finite variance). We set B = 6000, cg = 1, 200, cb = 1, 100, i.e.,
gateway always operates under large buffer model. The normalized
variance-time plots of T1(n), S1(n) are given in Fig. 4. The slope of
T1(n) is −1, or equivalently, H = 0.5, indicating that T1(n) is not
self-similar.

VI. CONCLUSION

The proposed model can help us understand and study the effect
of the gateway that feeds wireline traffic into the wireless network.
The analysis presented here suggests that under certain conditions
the self-similarity can be preserved through the gateway, while self-
similarity will disappear in the case that if the On durations of input
traffic are heavy-tailed while Off have finite variance and the gateway
operated always under the large buffer model.

VII. APPENDIX

Since the event “A < c” is dominant over “A ≥ c”, and A can only
take finite value, the event “Qe < c” occurs with higher probability
compared to that of “Qe ≥ c”. During the Off periods of S(n), no
new bits comes into buffer, and the previous buffer content (i.e. Qe)
is less than c. Thus, no packet leaves buffer during these periods, i.e.
P (Y T > y) ≈ P (Y S > y). It also holds: P (XT > x) ≈ P (XT >
x | A < c, Qe < c).

For a stable queue, the distribution of XT depends on the distri-
bution of buffer content at the regeneration points, i.e. Qe. With the
conditions that A < c and Qe < c, the event XT > x is equivalent
to the union of the following three conditions: (B1) There might be
a period of time with length l (l = 0, 1, 2, ...), when T (n) = 0 even
if S(n) > 0. (B2) The sum of the previous buffer content Qe and
the accumulating amount of incoming bits during the mean time is
enough to form at least x packets. (B3) The corresponding On period
of S(n), XS , should be larger than x + l.

The following observations will also be used in derivations: (C1)
The buffer content Qe can only take non-negative value. (C2)
According to P (Qe < c) ≈ 1, we have min(c, L) = c. (C3)
According to P (A < c) ≈ 1, i.e. KA � c, we have KA < x−1

x
c, i.e.

max(x−1
x

c, KA) = x−1
x

c. (C4) For the asymptotic complementary
distribution function of Qe it holds [13]P [Qe ≥ b] ∼ CQeb(1−α1),
where CQe is a constant. (C5) For the Pareto distributed On durations
of S(n) it holds: P (XS > x + l) = ( K1

x+l
)α1 . (C6) We find that

0 ≤ l ≤ x
x−1

< 2, or simply l = 0, 1.
By combining (B1)-(B3) and (C1)-(C6), we get:

P (XT > x | A < c, Qe < c)

x→∞∼
1∑

l=0

c∫
x−1

x
c

{
CQe(c − la)(1−α1)

−CQe [xc − (x + l)a](1−α1)
}

(
K1

x + l
)α1fA(a)da

(10)

where fA(a) is the pdf of On state rates of S(n) and it is assumed
to be cut-off Pareto distribution with CDF, F̄L(x; αA, KA) (i =
1, 2, ...). From (10), proposition 2 is proved.
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Fig. 1. The LLCD of On and Off durations of S(n) (dashed line) and T (n)
(solid line) for the large buffer system (B � cb).
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Fig. 2. The LLCDs of On periods and Off periods of S(n) (dashed line)
and T (n) (solid line) for the alternating gateway.
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Fig. 3. Normalized variance-time plot and the gateway alternates between
small and large buffer case.
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Fig. 4. Normalized variance-time plots when the gateway is always under
large buffer case.
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