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ABSTRACT
In this paper, we propose a time-scale canonical model as

a discrete characterization of wideband linear time-varying

systems. This representation decomposes a system output

into discrete time shifts and Doppler scalings on the input,

weighted by a smoothed discrete version of the wideband

spreading function. We base this formulation on the Mellin

transform that is matched to scalings. We also demonstrate

that our proposed model inherently affords a joint multipath-

scale diversity in wideband communication channels. By

properly designing the signaling and reception schemes us-

ing wavelet techniques, we can achieve this diversity over a

dyadic time-scale framework.

1. INTRODUCTION

Linear systems can be characterized in terms of their effect

on the transmitted signal leading to discrete canonical rep-

resentations that can be useful in many applications [?,?,?].

For example, the widely used tapped delay line model can

effectively decompose the output of a linear system into a

weighted summation of discrete time shifts. Thus, a freque-

ncy-selective channel can act as independent, flat fading

channels yielding multipath diversity [?]. Similarly, the time-

frequency canonical model based on the narrowband spread-

ing function can decompose the output of a linear time-

varying (LTV) system into a double weighted summation of

discrete time and frequency shifts providing joint multipath-

Doppler diversity [?]. Note that this time-frequency model

is matched to narrowband system changes.

When the system changes are wideband, an important

class of LTV systems is characterized by the wideband spre-

ading function (WSF) to accurately account for Doppler

scaling effects (compressions or dilations) [?]. Such sys-

tems are encountered in acoustic environments [?] and high-

speed underwater communications [?]. However, no dis-

crete implementations have been exploited yet to increase

the performance of wideband systems.

In this paper, we propose a time-scale canonical model

to decompose the WSF representation into a double weighted

superposition of uniformly sampled time shifts and geomet-

rically sampled Doppler scalings. We identify the Mellin
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transform and the Fourier transform as the matched tools to

process the Doppler scalings and time shifts, respectively.

We associate the sampling intervals with the signal’s sup-

port in the Mellin and Fourier domains, and generate a finite

expansion under realistic constrains on the wideband sys-

tem’s spread in the time-delay and scale planes. By properly

designing the transmitted signal, our proposed model can be

adapted to a dyadic time-scale sampling structure that en-

ables the efficient use of wavelet techniques and ultimately

leads to a time-scale RAKE receiver. We show by simula-

tion that this receiver structure can provide multipath-scale

diversity that can significantly increase the performance of

wireless wideband systems.

The rest of the paper is organized as follows. Section

2 describes the WSF characterization. Section 3 discusses

in detail the derivation of our proposed time-scale model.

Section 4 demonstrates the achieved diversity gain via sim-

ulations over wideband communication channels.

2. WIDEBAND SPREADING FUNCTION
REPRESENTATION

When a signal x(t) is transmitted with a propagation speed

c over a medium with wideband characteristics, it is trans-

formed as y(t) =
√|a| x (a(t − τ)), where a ≈ c+v

c−v is the

Doppler scaling caused by a moving object with velocity v.

In most real life applications, |v| < c, hence we will assume

that a > 0. The propagation delay τ is due to reflections of

x(t) off scatterers in the medium.

A wideband LTV system can be considered as the result

of fast moving scatterers that are continuously distributed

in range and velocity [?]. The system output can thus be

characterized by a superposition of the contributions from

all scatterers as,

y(t) =
∫ ∞

0

∫ ∞

−∞
χ(τ, a)

√
a x (a(t − τ)) dτda , (1)

where χ(τ, a) is the WSF that indicates the strength of the

scatter resulting in a time-delay τ and Doppler scaling a.

Due to the physical restrictions on the system, χ(τ, a) usu-

ally vanishes outside the regions of [0, Tm] and [A0, A1] in

the time-delay and Doppler scaling domains, respectively.
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When the system is randomly varying, χ(τ, a) can be

modeled as a stochastic process. A wideband scattering

function (WSC) can be defined to measure the second-order

statistics of the WSF. In particular, if the transmitted energy

is scattered uncorrelatedly in the time-scale domain, then

the WSC Ω(τ, a) satisfies

E[χ(τ, a)χ∗(τ ′, a′)] = Ω(τ, a)δ(a − a′)δ(τ − τ ′) (2)

where ∗ denotes conjugation, E[·] denotes expectation and

δ(·) is the Dirac delta function.

3. TIME-SCALE CANONICAL MODEL

In this section, we first review the Mellin transform that is

needed for the transform-based approach of discretizing the

time-scale parameters. After outlining the derivation of the

time-scale canonical model, we provide a finite approxima-

tion for the resulting expansion model for systems with fi-

nite spreads. The detailed derivation is given in [?].

3.1. The Mellin transform

The Mellin transform (MT) of a functional s(c) is [?]

Ms(β) =
∫ ∞

0

1√
c

s(c) ej2πβ ln cdc (3)

where c and β are dual Mellin variables. The inverse MT

s(c) =
∫ ∞

−∞

1√
c
Ms(β)e−j2πβ ln cdβ, c > 0 (4)

decomposes s(c) into a weighted expansion of hyperbolic

functions. The MT is invariant (up to a phase shift) to scale

changes in the same way that the Fourier transform is in-

variant to time shifts. Thus, the MT can be used to process

scale changes in the same way that the Fourier transform

handles time shifts [?, ?].

The MT satisfies a multiplicative convolution property.

More specifically, the MT of the multiplicative convolution
of s1(c) and s2(c),

s(c) = s1(c) � s2(c) =
∫ ∞

0

s1(cz)s∗2(z) dz ,

is simply the product of their MTs,

Ms(β) = Ms1(β)M∗
s2

(β) . (5)

3.2. Discretization of the time-scale parameters

In order to derive the time-scale canonical representation,

we first apply the multiplicative convolution property (5)

and the inverse MT (4) to (1). For a causal signal x(t), we

obtain,

y(t) =
∫ ∞

−∞

∫ ∞

0

(χ∗(τ, a)
√

a)∗x
(

atr

(
t − τ

tr

))
dadτ

=
∫ ∞

−∞

∫ ∞

−∞
M∗

θ(β; τ)Mg(β)e−j2πβ ln( t−τ
tr

) dβdτ√
t−τ
tr

(6)

where Mθ(β; τ) and Mg(β) are the MTs in (3) of the aux-

iliary functions θ(τ, a) = χ∗(τ, a)
√

a and g(a) = x(atr),
respectively, and tr is a normalization time ensuring that

(t − τ)/tr > 0.

As noted in [?], if a signal x(t) is localized in the time-

frequency plane, it is also essentially limited in the Mellin

domain. If we let the Mellin support of g(a) to be such

that Mg(β) is bounded within Θ = [−β0/2, β0/2], then

we can replace Mg(β) in (6) with Pβ0(β)Mg(β), where

Pβ0(β) = 1 for β ∈ Θ and zero otherwise.

After this replacement, the term M∗
θ(β; τ)Pβ0 (β) in (6)

can be expanded using a Fourier series

M∗
θ(β; τ)Pβ0 (β) =

∑
m∈Z

χ̃(τ, e
m
β0 )ej2πm β

β0 (7)

where χ̃(τ, a) is a scale-smoothed version of χ(τ, a)

χ̃(τ, a) =
∫ ∞

0

χ(τ, a′) sinc (β0(ln a′ − ln a)) da′ (8)

with sinc(x) = sin(πx)/(πx).
Letting β0 = 1

ln a0
, we can insert (7) into (6) to obtain,

y(t) =
∑
m∈Z

∫ ∞

−∞
χ̃(τ, am

0 )a
m
2
0 x(am

0 (t − τ)) dτ . (9)

Note that the scale variable is geometrically sampled as a =
am
0 , m ∈ Z, where a0 = e

1
β0 is the basic scaling factor.

The procedure of discretizing the delay variable τ in (1)

is entirely analogous to that of the scale variable. We first

express the time convolution in (9) as the inverse Fourier

transform of the frequency multiplication yielding

y(t) =
∑
m∈Z

∫ ∞

−∞
Ũ(f ; am

0 )a−m
2

0 X(a−m
0 f) ej2πftdf (10)

where X(f) and Ũ(f ; am
0 ) are the Fourier transforms of

x(τ) and χ̃(τ, am
0 ), respectively. If we assume that X(f) is

bandlimited to [−W
2 , W

2 ], then a
−m

2
0 X(a−m

0 f) is bandlim-

ited to [−am
0 W
2 ,

am
0 W
2 ]. Thus, a

−m
2

0 X(a−m
0 f) can be re-

placed by Pam
0 W (f)a−m

2
0 X(a−m

0 f) in (10), where Pf0 (f) =
1 for − f0

2 ≤ f ≤ f0
2 and zero otherwise. Then, a Fourier

expansion yields,

Ũ(f ; am
0 )Pam

0 W (f) =
∑
n∈Z

χ̂(
n

am
0 W

, am
0 )e

−j2π nf
am
0 W (11)
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where χ̂(τ, am
0 ) is a time-smoothed version of χ̃(τ, am

0 )

χ̂(τ, am
0 ) =

∫ ∞

−∞
χ̃(τ ′, am

0 ) sinc(am
0 W (τ − τ ′))dτ ′ . (12)

Substituting (11) into (10) and simplifying yields

y(t) =
∑
m∈Z

∑
n∈Z

χ̂(
n

am
0 W

, am
0 ) a

m
2
0 x(am

0 t − n

W
) . (13)

From (13), one can easily identify the time-scale sampling

through the grid of a = am
0 and τ = n/(am

0 W ).
Note that a different, operator-based, wideband channel

decomposition was obtained independently in [?], and a di-

versity application was discussed in [?].

3.3. Finite approximation

If the system of interest has bounded support [A0, A1] in the

scale domain, then (8) can be rewritten with β = 1
ln a0

and

a change of variable a′ = eγ as

χ̃(τ, am
0 ) =

∫ ln A1

ln A0

χ(τ, eγ) sinc

(
γ − m ln a0

ln a0

)
eγdγ . (14)

Considering the effective integration regions that overlap

with the mainlobe of the sinc function in (14), the mth co-

efficient χ̃(τ, am
0 ) in (9) is significantly nonzero only when

M0 ≤ m ≤ M1, where1 M0 = � lnA0
ln a0

� and M1 = � ln A1
ln a0

	.

On the other hand, if χ(τ, a) is bounded within [0, Tm]
in the time-delay domain, so is χ̃(τ, a) in (8). As a result,

the significant nonzero coefficients in (12)

χ̂(
n

am
0 W

, am
0 ) =

∫ Tm

0

χ̃(τ ′, am
0 ) sinc(n − am

0 Wτ ′)dτ ′

correspond to 0 ≤ n ≤ Nm, where Nm = �am
0 WTm	.

Combining both the discretization and the approxima-

tion, then y(t) in (1) admits the following representation,

y(t) ≈
M1∑

m=M0

Nm∑
n=0

χn,m xn,m(t) (15)

where χn,m = χ̂( n
am
0 W , am

0 ) is the discrete coefficient sam-

pled from a two-dimensional smoothed version of χ(τ, a)

χ̂(τ, a) =
∫ A1

A0

∫ Tm

0

χ(τ ′, a′) sinc(aW (τ − τ ′))

· sinc

(
ln a′ − ln a

ln a0

)
dτ ′da′

and xn,m(t) is a time-scaled and shifted version of x(t)

xn,m(t) = a
m
2
0 x(am

0 t − n

W
) . (16)

The truncated time-scale canonical model correspond-

ing to (15) is demonstrated in Fig. 1.

1Note that �x� (�x�) rounds x to the integer nearest to zero (infinity).

��

Fig. 1. Time-scale canonical model of a wideband system.

4. WIDEBAND MULTIPATH-SCALE DIVERSITY

4.1. Multipath-scale diversity and dyadic sampling

The wideband LTV system model is often matched to high

speed underwater or high data rate wideband communica-

tions, where time-varying scattering and multipath prop-

agation are subjected to fading degradations. One of the

widely used methods to combat fading is diversity [?] that

combines independently faded replicas of the transmitted

signal at the receiver before demodulation and detection.

As we will demonstrate next, the proposed canonical time-

scale representation in (15) will provide the desired diver-

sity when dyadic sampling and wavelet signaling are used.

When the wideband LTV system satisfies uncorrelated

scattering as in (2), and if Ω(τ, a) is sufficiently smooth,

then we can show mutual uncorrelation over different dis-

crete scales and delays [?],

E
[
χn,m χ∗

n′,m′
] ≈ Ω(

n

am
0 W

, am
0 ) a2m

0 δ[n − n′]δ[m − m′] .

When χn,m are Gaussian random variables, they are statis-

tically independent. Hence, the time-scale canonical model

with statistically independent coefficients provides

M =
M1∑

m=M0

(Nm + 1) (17)

replicas of the transmitted signal, resulting in an inherent

joint multipath-scale diversity of order M .

In order for a time-scale RAKE receiver to correctly

combine the aforementioned diversity components, the ba-

sic waveforms xn,m(t) in (16) should be orthogonal. In [?],

we proposed a wavelet-based waveform design which al-

lows only dyadic scalings, i.e., a = 2m, m ∈ Z. Specif-

ically, if we choose x(t) = 1√
Ts

ψ( t
Ts

), where ψ(t) is the
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scaling function of an orthonormal wavelet basis and W ≈
T−1

s , then for any n, m, n′, m′ ∈ Z, xn,m(t) can be verified

to satisfy the orthonormality condition

∫ ∞

−∞
xn,m(t)x∗

n′,m′(t) dt = δ[n − n′] δ[m − m′] .

Note that a0 = 2 in (13) ultimately leads to sampling the

multipath-scale plane in a dyadic lattice as shown in Fig. 2

(a). Furthermore, this dyadic structure can be realized by

choosing ψ(t) as a Haar wavelet. The Haar wavelet ψ(t)
and its MT Mψ(β) are plotted in Fig. 2 (b). As assumed

in our derivation in Section 3.2, the support of the MT of

x(t) = 1√
Ts

ψ( t
Ts

) is essentially within β ∈ [− 1/2
ln 2 , 1/2

ln 2 ] as

shown by the dotted region in Fig. 2 (b).

4.2. Simulation Results

In this section, we demonstrate the multipath-scale diversity

gains that can be obtained for binary, antipodal signaling

over three simulated wideband channels. The modulation

waveform x(t) with duration Ts = 0.5 ms was designed

based on the Haar wavelet as discussed in Section 4.1, lead-

ing to dyadic channel decompositions. The channel param-

eters are specified in Table 1. All independent sub-channels

have the same SNR. The channel coefficients are assumed

to be Rayleigh fading and known at the receiver. The coher-

ent detection of the time-scale RAKE receiver corresponds

to a maximum ratio combining (MRC) and was discussed

in [?]. The performance of the time-scale RAKE receiver

is shown in Fig. 3 to increase for increasing M in (17). As

it can be seen, the simulated results for M = 5, 8 and 10
follow the theoretical curves for M th order diversity with

MRC detection [?].
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Fig. 2. (a) Dyadic sampling. (b) Haar wavelet and its MT.

Channel Tm A0 A1 M0 M1 Nm M in (17)

I 0.8 ms 0.6 0.8 -1 0 1, 2 5

II 0.8 ms 1.0 1.8 0 1 2, 4 8

III 0.8 ms 0.6 1.8 -1 1 1, 2, 4 10

Table 1. System parameters for three wideband channels.
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Fig. 3. Multipath-scale diversity.

5. CONCLUSION

We developed a time-scale canonical model to represent

wideband LTV systems in terms of discrete Doppler scal-

ings and time shifts, weighted by a smoothed WSF. This

model was derived based on sampling the signal in the mat-

ched Mellin and Fourier domains. The important implica-

tion of this model is the multipath-scale diversity that is

inherent to a wideband LTV communication channel with

known Doppler scale and multipath spread. A signaling

and reception scheme based on orthonormal wavelet basis

is demonstrated to achieve the diversity gain effectively.
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