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ABSTRACT

A method for sequential estimation of stochastic continuous-time
signal parameters is presented. The parameters are estimated by
fitting the covariance function of the continuous-time process to
sample covariances from discrete-time data in a sequential algo-
rithm. Compact expressions are given for the sequential estimation
algorithm, in which the continuous-time parameterization is kept.

1. INTRODUCTION

When describing stochastic signals and systems in a continuous-
time framework, it is important to have fast and reliable estimators
for the involved parameters, [1–5]. Continuous-time stochastic
signal and system descriptions are often used in econometrics, [6],
and in science, where it is important that the parameters have phys-
ical interpretations, see, e.g., [7]. The continuous-time stochastic
descriptions are also frequently used when filter and control de-
signs are made in continuous-time, [8], and when data are sampled
irregularly, [9]. A very general continuous-time signal description
is the continuous-time ARMA process, defined as

A(p)y(t) = B(p)e(t) (1)

E{e(t)e(s)} = σ
2
eδ(t − s), (2)

where

A(p) = p
n + a1p

n−1 + . . . + an, (3)

B(p) = b0p
m + b1p

m−1 + . . . + bm, (4)

where p denotes the differentiation operator, and n > m, and A(p)
has all zeros in the left half-plane. The continuous-time ARMA
process can be interpreted as the underlying process for the spec-
trum

φ(iω) = σ
2
e

|B(iω)|2

|A(iω)|2
. (5)

By varying the parameters {ai}
n

i=1 and {bi}
m

i=0, the continuous-
time ARMA process has the ability to describe signals with spectra
of almost any shape. Note that a continuous-time AR process is
obtained as a special case if bi = 0, i = 0, . . . , m − 1. When
introducing a state space representation

ẋ(t) = Ax(t) + Be(t), (6)

y(t) = C
T
x(t) (7)

for the continuous-time ARMA process, one possible choice of
A ∈ R

n×n, B ∈ R
n×1 and C ∈ R

n×1 is

A =

�
�����

−a1 1
...

. . .
... 1

−an

�
����� , (8)

B =
�
0, . . . , 0, b0, . . . , bm

�T
, (9)

C =
�
1, 0, . . . , 0]T , (10)

which gives an observable canonical form. By using a Wiener
process

w(t) =

�
t

0

e(s) ds, (11)

the continuous-time stochastic state space description (6) can be
expressed as the stochastic differential equation [10]

dx(t) = Ax(t) dt + B dw(t), (12)

where dw(t) = e(t) dt is the increment of the Wiener process
w(t).

The output signal y(t) is observed at t = h, 2h, . . . and the
problem of interest in the paper is to estimate the continuous-time
ARMA parameters

θ =
�
a1, . . . , an, b1, . . . , bm

�T
(13)

sequentially from the discrete-time data. A possible solution is
to sample the continuous-time ARMA process to get a discrete-
time description. The parameters in the discrete-time description
could then be estimated and mapped onto the continuous-time pa-
rameters. However, there is no closed-form expression for the
mapping of the zeros, [11], which is a serious drawback for this
approach, especially if it was to be implemented sequentially for
a real-time scenario. This problem is circumvented if the cont-
inuous-time parameterization is kept. One way of doing this is
to replace the differentiation operator in the continuous-time de-
scription with an approximation, form a linear regression and es-
timate the parameters using the least squares method. This is
done for continuous-time AR processes in [12,13]. Unfortunately,
this approach is not straightforward to apply for a continuous-time
ARMA process. The solution presented in this paper is to use
an expression for the covariance function of the continuous-time
ARMA process, parameterized by the continuous-time parameters
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{ai}
n

i=1 and {bi}
m

i=0. The parameters are then determined by fit-
ting the parameterized covariance function to a covariance func-
tion estimated from discrete-time data in a sequential estimation
algorithm.

2. COVARIANCE FUNCTION

The covariance matrix Rx of the state vector x(t) is given from a
continuous-time Lyapunov equation [14]

ARx + RxA
T + σ

2
eBB

T = 0. (14)

The covariance function Rx(τ) of x(t) is evaluated, using the
solution to (6), as

Rx(τ) = E{x(t + τ)xT (t)}

= E{(eAτ
x(t) +

�
t+τ

t

e
A(t+τ−s)

Be(s)ds)xT (t)}

= e
Aτ

Rx.

(15)

This gives, together with (7), that the covariance function of y(t)
can be expressed as

rθ(τ) = E{y(t + τ)yT (t)} = C
T
Rx(τ)C. (16)

Here, the dependency on the parameter vector θ in (13) is empha-
sized. The theoretical expression (16) for the covariance function
is used in the next section, together with sample covariances, for
estimating the parameter vector θ sequentially.

3. SEQUENTIAL ESTIMATION

An estimate r̂N (τ) of the covariance function from the N samples
y(1), . . . , y(N) is given as

r̂N (τ) =
1

N − τ

N−τ�
t=1

y(t)y(t + τ), τ ≥ 0. (17)

When a new sample y(N + 1) is added, the estimate (17) is mod-
ified sequentially as

r̂N+1(τ) = α(τ)r̂N (τ) + β(τ)ρ(τ) (18)

to give an updated estimate r̂N+1(τ), where

α(τ) =
N − τ

N + 1 − τ
, (19)

β(τ) =
1

N + 1 − τ
, (20)

ρ(τ) = y(N − τ + 1)y(N + 1). (21)

Define the loss function

JN (θ) =

τmax�
τ=0

(r̂N (τ) − rθ(τ))2, (22)

where r̂N (τ) is defined in (17) and rθ(τ) in (16), from which an
estimate θ̂N is obtained as

θ̂N = arg min
θ

JN (θ). (23)

Next, it is shown how the estimator (23) can be implemented in a
sequential form, where the current estimate is updated and modi-
fied when a new data point y(N + 1) is added. In the remainder
of this section, the function argument τ is omitted.

Using (18), the loss function JN+1(θ) can be expressed as

JN+1(θ) =

τmax�
τ=0

(r̂N+1 − rθ)2

=

τmax�
τ=0

{α2
r̂
2
N + β

2
ρ
2 + r

2
θ + 2αβρr̂N

− 2αr̂Nrθ − 2βρrθ}

=
1

2
JN (θ) +

τmax�
τ=0

{
1

2
(rθ − 2βρ)2 − β

2
ρ
2

+ (α2 −
1

2
)r̂2

N + (1 − 2α)r̂Nrθ + 2αβρr̂N},

(24)

where a completion of squares is carried out in the last step. This
is not needed for the remainder of the derivation, but it gives an
expression that more clearly reveals that θ is affected by the new
data point y(N + 1) in ρ. However, the most important fact about
(24) is that JN+1(θ) is explicitly dependent on JN (θ).

Approximating rθ using a first order Taylor series expansion
about θ̂N gives

rθ ≈ r
θ̂N

+ ψ
T

N
· (θ − θ̂N ), (25)

where

ψ
N

=
drθ

dθ

����
θ=θ̂N

. (26)

Substituting (25) in (24) gives

JN+1(θ) ≈
1

2
JN (θ)

+

τmax�
τ=0

{
1

2
(r

θ̂N
+ ψ

T

N
· (θ − θ̂N ) − 2βρ)2

+ (1 − 2α)r̂N (r
θ̂N

+ ψ
T

N
· (θ − θ̂N ))

− β
2
ρ
2 + (α2 −

1

2
)r̂2

N + 2αβρr̂N}.

(27)

Differentiation of (27) with respect to θ gives

J̇N+1(θ) ≈
1

2
J̇N (θ)

+

τmax�
τ=0

{ψ
N

(r
θ̂N

+ ψ
T

N
· (θ − θ̂N ) − 2βρ)

+ (1 − 2α)r̂Nψ
N
},

(28)

where

J̇N (θ) =
dJN (θ)

dθ
. (29)

A first order Taylor series expansion of J̇N (θ) around θ̂N gives

J̇N (θ) ≈ J̇N (θ̂N ) + HN · (θ − θ̂N )

≈ HN · (θ − θ̂N ),
(30)
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due to optimality of θ̂N , and where

HN =
d2JN (θ)

dθdθT

����
θ=θ̂N

. (31)

Substituting (30) into (28) gives

J̇N+1(θ) ≈
1

2
HN · (θ − θ̂N )

+

τmax�
τ=0

{ψ
N

(r
θ̂N

+ ψ
T

N
· (θ − θ̂N ) − 2βρ)

+ (1 − 2α)r̂Nψ
N
}.

(32)

The fact that J̇N+1(θ̂N+1) = 0, due to optimality of θ̂N+1, and
some algebraic manipulations, give

θ̂N+1 ≈ θ̂N −

�
1

2
HN +

τmax�
τ=0

{ψ
N

ψ
T

N
}

�
−1

·

τmax�
τ=0

{(r
θ̂N

− 2βρ + (1 − 2α)r̂N )ψ
N
}.

(33)

The relation (33) constitutes a sequential update of the estimate
θ̂N to θ̂N+1, when a new data point y(N +1) is added. However,
a computationally more efficient form is obtained if HN can be
updated recursively. Differentiation of (28) with respect to θ gives

J̈N+1(θ) ≈
1

2
J̈N (θ) +

τmax�
τ=0

{ψ
N

ψ
T

N
}, (34)

so

HN+1 ≈
1

2
HN +

τmax�
τ=0

{ψ
N

ψ
T

N
}. (35)

Let

P
−1
N = HN+1. (36)

It then holds that

P
−1
N =

1

2
P

−1
N−1 +

τmax�
τ=0

{ψ
N

ψ
T

N
}. (37)

The matrix inversion lemma

(D + EF)−1 = D
−1 − D

−1
E(I + FD

−1
E)−1

FD
−1

, (38)

where D, E, F and the identity matrix I have appropriate dimen-
sions, then gives

PN =

�
1

2
P

−1
N−1 +

τmax�
τ=0

{ψ
N

ψ
T

N
}

�
−1

= 2PN−1 −
4PN−1

�
τmax
τ=0{ψN

ψT

N
}PN−1

1 + 2
�

τmax
τ=0{ψ

T

N
PN−1ψN

}
.

(39)

The sequential estimation algorithm is now summarized as

θ̂N+1 = θ̂N − PN

τmax�
τ=0

{(r
θ̂N

− 2βρ + (1 − 2α)r̂N )ψ
N
},

(40)

where

• PN is given iteratively by (39),

• r
θ̂N

is evaluated using (16),

• α, β and ρ are defined in (19), (20) and (21), respectively,

• r̂N is given iteratively by (18),

• ψ
N

is defined in (26).

This completes the derivation of the sequential estimation algo-
rithm.

4. SAMPLING

The generation of discrete-time data from continuous-time ARMA
processes is briefly described in this section, see, e.g., [14] for fur-
ther details. The results presented here are used when generating
data for the numerical study in the next section.

Let the sampling instants be t = h, 2h, . . .. Integration of the
process (6) over one sampling period gives

x(kh + h) = e
Ah

x(kh) +

�
kh+h

kh

e
A(kh+h−s)

Be(s)ds

def
= Adx(kh) + v(kh),

(41)

with k being an integer. The random variable v(kh) is discrete-
time white noise with covariance matrix

Rv =

�
h

0

e
As

σ
2
eBB

T
e
A

T
sds. (42)

The model (41) is therefore a standard discrete-time stochastic
state space model, and it has the same covariance function, mea-
sured at multiples of the sampling interval, as the original contin-
uous-time process (6). It also holds that the discrete-time spectral
density tends to the continuous-time spectral density as the sam-
pling interval tends to zero.

5. NUMERICAL STUDY

Consider the second order continuous-time AR process

(p + 	1)(p + 	2)y(t) = e(t), (43)

E{e(t)e(s)} = δ(t − s), (44)

where 	1 �= 	2, 	1 > 0, 	2 > 0. By representing the process
on state space form and proceeding as described in Section 2, the
covariance function is given as

rθ(τ) =
	1e

−�2τ − 	2e
−�1τ

2	1	2(	21 − 	22)
, (45)

where

θ =
�
	1, 	2

�T
. (46)

The true parameters are chosen as

θtrue =
�
2, 3

�T
(47)

and discrete-time data are generated by sampling the process (43),
as described in Section 4, with sampling interval h = 0.1.

The sequential algorithm (40) is used for estimating θ in (46),
with the initial parameters taken as

θinit =
�
1, 4

�T
. (48)
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Fig. 1. The sequential parameter estimates of l1 (solid) and l2
(dashdot) as functions of the number of samples, i.e., the number
of algorithm iterations. The true parameter values are indicated
with solid lines.

Here, an initial value of r̂N (τ) is estimated using some of the data
generated from the process. This is done before the sequential al-
gorithm is started up with fresh data, i.e., data that have not been
used for estimating r̂N (τ). An initial value of PN is here given
from (36) and (31), where (31) is computed numerically, and eval-
uated for θinit. Moreover, the parameter τmax is chosen equal to
four. The resulting sequential parameter estimates for a realization
as described above are shown in Fig. 1, where it is seen that the
estimates reach their true values after about 30 iterations.

6. CONCLUSIONS

An algorithm for sequential estimation of stochastic continuous-
time parameters from discrete-time data was presented. The al-
gorithm is based on fitting the covariance function of the process,
which is parameterized by the signal parameters, to sample co-
variances. The continuous-time parameterization is therefore kept
throughout the whole estimation procedure, and there is no need
for transformations between continuous- and discrete-time para-
meterizations. Such transformations are known to be difficult,
since a closed-form expression for the mapping of zeros does not
exist. Another advantage with the sequential estimation algorithm
proposed in the paper is that no signal derivatives have to be con-
structed from the discrete-time data. Instead, the information in the
discrete-time data are utilized by means of covariances, which are
possible to estimate with high accuracy. The sequential algorithm
was given in compact expressions that are easy to implement, and
the applicability was illustrated in a numerical study.
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