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ABSTRACT

We present a subspace-based scheme for the estimation of the
poles (angular-frequencies and damping-factors) of a sum of
damped and delayed sinusoids. In our model each component is
supported over a different time frame, depending on the delay pa-
rameter. Classical subspace based methods are not suited to han-
dle signals with varying time-supports. In this contribution, we
propose a solution based on the best rank-(R1, R2, R3) approxi-
mation of a partially structured Hankel tensor on which the data are
mapped. We show, by means of an example, that our approach out-
performs the current tensor and matrix-based approaches in terms
of the accuracy of the damping parameter estimates.

1. INTRODUCTION

Estimation of the poles of a sum of windowed sinusoidal com-
ponents is a key problem in harmonic retrieval [1], audio signal
compression [2] and biomedical signal processing [3]. Among the
numerous methods that have been proposed, the “subspace” meth-
ods, based on the invariance property of the signal subspace, form
an important class.

Classically, these methods are used for the model-parameter
estimation of a sum of Exponentially Damped Sinusoids (EDS)
with the same time-support. Each component has the same length,
namely, the length of the analysis window. In this contribution,
we propose to use a more sophisticated model, called the Partial
Damped and Delayed Sinusoidal model (PDDS). In this model,
we add time-delay parameters that allow to time-shift each burst
of EDS components. This modification is useful for the compact
modeling of fast-time varying signals. For instance, [2] contains
an application example in the context of audio transient compres-
sion.

Recently, multilinear algebra based variants of subspace meth-
ods have been derived. In [4] the Higher-Order Singular Value
Decomposition (HOSVD), discussed in [5, 6], and the best rank-
(R1, R2, R3) approximation, discussed in [7, 6, 8], are used for
the estimation of EDS from single-channel or multi-channel mea-
surements. In [9] the HOSVD is used for PDDS modelling. In
this paper we will use the best rank-(R1, R2, R3) approximation
for PDDS modelling. The tensor approximation will be computed
by means of the Higher-Order Orthogonal Iteration (HOOI) algo-
rithm [7, 6, 8], which is a tensor generalization of the well-known
Orthogonal Iteration algorithm for the computation of the domi-
nant subspace of a matrix.

The estimation of the damping-factors is known to be a diffi-
cult problem [1]. By means of an example, we will show that our
approach is more accurate than the best current subspace methods.

2. THE PDDS MODEL AND ITS MULTICHANNEL
STRUCTURE

2.1. Definition of the model

We define the complex Mk-PDDS model for n ∈ [0 : N − 1], by

ŝk(n)
�
=

Mk∑
m=1

αm,k . z
n−tk
m,k . ψ(n − tk) (1)

where αm,k = am,keiφm,k is the complex amplitude, with am,k

and φm,k respectively the m-th real amplitude and initial phase
of the k-th PDDS model of order Mk. zm,k = edm,k+iωm,k is
the pole, with dm,k the (negative) damping factor and ωm,k the
angular-frequency. We denote by {tk}k∈[0:K] the delay parameter
set with t0 = 0, tK = N − 1, 0 ≤ tk < tk+1 ≤ N − 1 and
Bk = tk+1 − tk. The Heaviside function ψ(n) is equal to “1” for
n ∈ [0 : N − 1] and “0” otherwise. Note that there is a unique
delay tk for a set (sum) of Mk EDS waveforms. The M -PDDS
model, where M =

∑K−1
k=0 Mk, is ŝ(n) =

∑K−1
k=0 ŝk(n).

2.2. Channel with interference

We assume that the set of time-delays {tk}k∈[0:K] is known. We
can for example use a time-delay detector-estimator based on the
variation of the energy of the time-envelope [2]. Our derivation
now starts from the following observation:

The K signals

{x̂k(n), n ∈ [0 : Bk − 1]}k∈[0:K−1], (2)

given by

x̂k(n)
�
= ŝk(n + tk)︸ ︷︷ ︸

Mk-EDS

+

k−1∑
�=0

M�∑
m=1

αm,� z
∑k−1

u=�
Bu

m,� zn
m,�

︸ ︷︷ ︸
“interference”

. (3)

are EDS models of order
∑k

�=0 M� with varying time-supports
that can be seen as the sum of (1) a Mk-EDS signal ŝk(n + tk)

and (2) an interfering attenuated
(∑k−1

�=0 M�

)
-EDS model.
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Each signal x̂k(n) will be considered as a separate channel of
Bk samples. Depending on the application, Bk may be small.
Because the Fourier resolution is O(B−1

k ), Fourier analysis may
not allow for an accurate estimation of the model parameters. In-
stead, we propose a subspace approach for the estimation of the
set {zm,k}m∈[1:Mk] from the set of channels (2).

However, the fact that the channels have a variable length poses
a serious problem for the joint estimation of all the poles, i.e.
{{zm,k}m∈[1:Mk], k ∈ [0 : K − 1]}. Indeed, subspace-based
methods are not well suited to handle signals with varying time-
supports. In the next section, we present a solution.

3. THE TENSOR APPROACH

In [9], we have compared several subspace methods in terms of es-
timation accuracy with which the parameters of a noisy fast time-
varying signal are estimated. Here, we recall the best alternative.

3.1. Block-Vandermonde decomposition of a structured ten-
sor

Consider a B− × (B+ − B−) × K partially structured Hankel-
type tensor A. This three-way array can be interpreted as a series
of “slabs” indexed by the channel index. More precisely, we have
for the k-th slab:

[A]k
�
= H(x̂k) W k (4)

where we define H(.), the linear Hankel operator, as a mapping of
a Bk-sample vector x̂k to a B−× (Bk −B−) matrix H(x̂k) hav-
ing constant skew diagonals. More precisely, every matrix H(x̂k),
represents the Hankel data matrix of the k-th channel of sample
size Bk. Finally, we introduce the (Bk − B−) × (B+ − B−)
weighting matrix

W k
�
=

[
IBk−B− 0(Bk−B−)×(B+−Bk)

]
(5)

with B+ �
= maxk Bk and B− �

= [δ mink Bk], where [.] is the
integer part of its argument. B− (i.e. δ) is chosen such that
∀k, B− < Bk ≤ B+.

Theorem 3.1 If all the poles in the PDDS model are distinct and
if we assume that

M < min(B−, B+ − B−) (6)

then tensor A is a rank-(M, M, K) tensor that admits the follow-
ing decomposition:

A = C ×1 Θ. (7)

Proof: In equation (7), the mode-1 product ×1 [11] means that,
for the k-th slab (k ∈ [0 : K − 1] and see figure 1):

[A]k = Θ [C]k . (8)

The matrix [C]k is M × (B+ − B−) and consists of K blocks of
dimension M� × (B+ − B−). Each block, indexed by �, is given
by

⎧⎪⎨
⎪⎩

Ψ� ∆
∑k−1

u=�
Bu

� Z
(Bk−B−)
�

T

W k , for � ∈ [0 : k]

0M�×M� , for � ∈ ]k : K − 1]

with ∆k = diag{z1,k, . . . , zMk,k} and Ψk =
diag{α1,k, . . . , αMk,k} and, for a ∈ [0 : A − 1],

[Z
(A)
� ]am = za

m,� defining an A × M� Vandermonde ma-
trix. The matrix Θ is defined as

Θ =
[
Z

(B−)
0 Z

(B−)
1 . . . Z

(B−)
K−1

]
. (9)

Fig. 1. Decomposition of tensor A.

First, note that the right multiplication by W k in expression (4)
leaves unchanged the column space of H(x̂k), ie. R([A]k) =
R(H(x̂k)). Equation (7) follows from (3) by straightforward al-
gebraic manipulations.

It remains to be shown that tensor A is rank-(M, M, K). To
this end, we introduce three so-called “matrix unfoldings” of A:

A(1) : B− × K(B+ − B−) (10)

A(2) : (B+ − B−) × KB− (11)

A(3) : K × B−(B+ − B−). (12)

These matrices are different rearrangements of the values of the
tensor. In matrix A(1) all the column vectors of A are stacked in
a certain order. The row vectors and “three-mode vectors” of A
are stacked in A(2) and A(3), respectively. See [5, 6] for an exact
definition. Tensor A is by definition rank-(R1, R2, R3) when the
rank of matrix A(j) is equal to Rj , j ∈ [1 : 3]. Due to the Hankel-
type structure of tensor A, the matrix unfoldings are also struc-
tured. Consequently, if condition (6) is verified, then A(1) and
A(2) are rank-M deficient matrices, thus R1 = R2 = M . As far
as A(3) is concerned, we have K ≤ M because ∀k, Mk �= 0. In
other words, the row dimension of A(3) is smaller than the model
order. Moreover, from condition (6) and K ≤ M , follows that
K < B−(B+ − B−). Hence, A(3) is a “fat” matrix (row dimen-
sion lower than column dimension). This implies that A(3) is not
rank-deficient. We thus have R3 = K.

3.2. Shift invariance of matrix Θ

Matrix Θ, defined in expression (9), is block-Vandermonde. Its
shift invariance allows one to estimate all the poles of the PDDS
model. Let Θ↓ and Θ↑ be the two submatrices of Θ, obtained by
deleting the last and the first row, respectively. We then have

Θ↓ ∆ − Θ↑ = 0 (13)

where ∆ = diag {zm,k, m ∈ [1 : Mk], k ∈ [0 : K − 1]}.
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4. COMPUTATION OF THE SIGNAL SUBSPACE BY
MEANS OF THE HOOI ALGORITHM

4.1. The matrix-pencil algorithm

The classical matrix-pencil algorithm [1] starts with the determi-
nation of a column-wise orthonormal matrix U that has the same
column space as Θ. The columns of this matrix are given by the
M dominant singular vectors of the Hankel data matrix. Next, de-
fine U ↓ and U ↑ in a similar way as Θ↓ and Θ↑ and compute B
from

U ↓ B − U ↑ = 0. (14)

It can be shown that the matrix B is similar to Θ. In other words,
the eigenvalues of B are the poles zm,k, m ∈ [1 : Mk], k ∈ [0 :
K − 1].

For the estimation of the PDDS parameters, we are working in a
multilinear context. It is natural to obtain a column-wise orthonor-
mal matrix U from the HOSVD of A. This was done in [9]. How-
ever, as is shown in [7, 8], albeit the HOSVD yields a good rank-
(R1, R2, . . . , RJ) approximation of a higher-order tensor, this ap-
proximation is usually not optimal. The optimal approximation
can for instance be computed by means of the HOOI algorithm
[7]. This indeed improves the signal subspace estimation, as will
be shown in Section 5. In the two following subsections, we briefly
present the HOSVD and the HOOI algorithm.

4.2. The Higher-Order Singular Value Decomposition

Theorem 4.1 (Jth-Order Singular Value Decomposition)
Every complex (I1 × I2 × . . . × IJ)-tensor A can be written as
the product

A = S ×1 U (1) ×2 U (2) . . . ×J U (J), i.e., (15)

(A)i1i2...iJ =
∑

j1j2...jJ

(S)j1j2...jJ (U (1)))i1j1 . . . (U (J))iJ jJ ,

for all index values, in which U (j) is a unitary (Ij × Ij)-matrix
and S is an all-orthogonal and ordered complex (I1 × I2 × . . .×
IJ)-tensor. All-orthogonality means that the subtensors S ij=α,
obtained by fixing the j-th index to α, are mutually orthogonal
w.r.t. the standard inner product. Ordering means that

∥∥S ij=1

∥∥ �∥∥S ij=2

∥∥ � . . . �
∥∥S ij=Ij

∥∥ � 0 for all possible values of j.

The Frobenius-norms
∥∥S ij=i

∥∥, symbolized by σ
(j)
i , are j-mode

singular values of A and the vector u
(j)
i is an i-th j-mode singular

vector.

This decomposition is a generalization of the matrix SVD be-
cause diagonality of the matrix containing the singular values, in
the matrix case, is a special case of all-orthogonality. Also, the
HOSVD of a second-order tensor (matrix) yields the matrix SVD,
up to trivial indeterminacies. The matrix of j-mode singular vec-
tors, U (j), can be found as the matrix of left singular vectors of the
matrix unfolding A(j), defined in (10) – (12). The j-mode singular
values correspond to the singular values of this matrix unfolding.
The core tensor S can then be computed by bringing the matrices
of j-mode singular vectors to the left side of equation (15):

S = A ×1 U (1)H ×2 U (2)H
. . . ×J U (J)H

. (16)

For our data tensor A, it can be shown that, in the absence of
noise, R(U (1)) = R(Θ). Hence, we can extract the poles from

the eigen-decomposition of the product U
(1)
↓

†
U

(1)
↑ , in which †

denotes the Moore-Penrose pseudo-inverse.

4.3. Best rank-(R1, R2, . . . , RJ) approximation

In this section we consider a multilinear generalization of the best
rank-R approximation of a given matrix. More precisely, given a
J-th order tensor A ∈ C

I1×I2×...IJ , we want to find a tensor Â ∈
C

I1×I2×...IJ , with rank(Â(1)) = R1, rank(Â(2)) = R2, . . . ,
rank(Â(J)) = RJ , that minimizes the least-squares cost function

f(Â) = ‖A − Â‖2. (17)

The rank conditions imply that Â can be decomposed as

Â = B ×1 U (1) ×2 U (2) . . . ×J U (J), (18)

in which U (1) ∈ C
I1×R1 , U (2) ∈ C

I2×R2 , . . . , U (J) ∈ C
IJ×RJ

each have orthonormal columns and B ∈ C
R1×R2×...×RJ .

Similarly to the second-order case, where the best approxima-
tion of a given matrix A ∈ C

I1×I2 by a matrix Â = U (1) · B ·
U (2)H

, with U (1) ∈ C
I1×R and U (1) ∈ C

I2×R column-wise or-
thonormal, is equivalent to the maximization of ‖U (1)H ·A·U (2)‖,
we have that the minimization of f(Â) is equivalent to the maxi-
mization of

g(U (1), U (2), . . . , U (J)) = ‖A×1U
(1)H×2U

(2)H
. . .×JU (J)H‖2.

The optimal core tensor follows from

B = A ×1 U (1)H ×2 U (2)H
. . . ×J U (J)H

. (19)

It is natural to question whether the best rank-(R1, R2, . . . , RJ)
approximation of a higher-order tensor can be obtained by trunca-
tion of the HOSVD, in analogy with the matrix case. The situation
turns out to be quite different for tensors [7, 8]. By discarding the
smallest n-mode singular values, one obtains a tensor Â that is
in general not the best possible approximation under the given n-
mode rank constraints. In our application, the truncated HOSVD
and the best rank-(R1, R2, . . . , RJ) approximation are generically
only equal in the absence of noise.

In [7, 8] the following approach was followed for the compu-
tation of the best rank-(R1, R2, . . . , RJ) approximation. Imagine
that the matrices U (1), . . . , U (j−1), U (j+1), . . . , U (J) are fixed
and that the only unknown is the column-wise orthonormal matrix
U (j). We have

g = ‖Ã(j) ×j U (j)H‖2, (20)

in which Ã(j) �
= A ×1 U (1)H

. . . ×j−1 U (j−1)H ×j+1

U (j+1)H
. . .×J U (J)H

. Hence the columns of U (j) can be found
as an orthonormal basis for the dominant subspace of Ã(j)

. Re-
peating this procedure for different mode numbers leads to an Al-
ternating Least Squares (ALS) algorithm for the (local) maximiza-
tion of f(Â): in each step the estimate of one of the matrices
U (1), U (2), . . . , U (J) is optimized, while the other matrix esti-
mates are kept constant.

It makes sense to initialize the HOOI with the truncated
HOSVD. The HOSVD-estimate usually belongs to the attrac-
tion region of the best rank-(R1, R2, . . . , RJ) approximation, al-
though there is no absolute guarantee of convergence to the global
optimum [7].
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5. SIMULATIONS

Consider the noisy synthetic signal of figure 2 given by s = ŝ +
σw. σw denotes a white Gaussian perturbation with variance σ2.
ŝ is a 200-sample 2-PDDS signal. The performance criterion is
the Normalized Mean Square Error (NMSE), in logarithmic scale,
evaluated for several Signal-to-Noise Ratios (SNRs) and averaged
over 500 trials. The NMSE is defined by the mean ratio of the
square difference between the true parameter value and its estimate
over the square value of the true parameter. The SNR in dB is
defined by SNR(ŝ, σw) = 10 log10(||ŝ||22/σ2).

0 50 100 150 200
1

0.8

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8

1

Time [sample]

Fig. 2. Test signals �e{ŝ}.

In figure 3, we show the estimation errors for the angular-
frequencies (ω̂1,0 and ω̂1,1) and the damping factors (d̂1,0 and
d̂1,1) as obtained by the T1 algorithm (tensor method based on
the HOSVD), by the T1+ algorithm (tensor method based on the
HOOI) and the MC1 algorithm (currently the best matrix approach
[2]). The latter method is based on the decomposition of matrix
[H(x̂0) . . . H(x̂K−1)]. We show also the Conditional Cramer-
Rao Bound (CCRB) for the PDDS model. This bound is derived
in reference [10]. Note that the term conditional means that this
bound is computed with the exact knowledge of the discrete time-
delay parameters.

As can be seen in figure 3, method T1 is equivalent to the best
matrix approach, MC1. Further, we conclude that the three algo-
rithms perform similarly w.r.t. the angular-frequencies. On the
other hand, the T1+ algorithm is more robust to noise than the T1
and MC1 algorithms as far as the estimation of the damping fac-
tors is concerned. In particular, we observe results quite close to
the optimal CCRB.

6. CONCLUSION

In this paper, we have presented a subspace-based method for es-
timation of the poles (angular-frequencies and damping-factors)
of damped and delayed sinusoids, having different time-supports.
The algorithm uses multilinear algebraic tools, applied to a struc-
tured data tensor. Fitting a synthetic transient signal showed that
our approach outperforms the current tensor and matrix methods
for the estimation of PDDS model parameters.
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Fig. 3. (a) NMSE(ω̂1,0), (b) NMSE(ω̂1,1), (c) NMSE(d̂1,0), (d)
NMSE(d̂1,1).
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