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Abstract—The problem of minimizing an L2-sensitivity mea-
sure subject to L2-norm dynamic-range scaling constraints for
state-space digital filters is considered. A novel iterative technique
is developed to solve the constraint optimization problem directly.
The proposed solution method is largely based on the use
of a Lagrange function and some matrix-theoretic techniques.
Computer simulation results are also presented to demonstrate
the effectiveness of the proposed technique.

I. INTRODUCTION

In the implementation of fixed-point state-space digital filters
with finite word length (FWL), the efficiency and performance
of the filter are directly affected by the choice of its state-space
filter structure. If a transfer function satisfying specification
requirements is designed with infinite accuracy coefficients
and realized by a state-space model, the coefficients in the
state-space model must be truncated or rounded to fit the FWL
constraints. The characteristics of the filter is then altered due
to the coefficient quantization, which may turn a stable filter
into an unstable one. Therefore, the problem of minimizing
the coefficient sensitivity of a digital filter is a significant
research topic. Several techniques have been proposed for
synthesizing state-space digital filter structures that minimize
the coefficient sensitivity. These can be divided into two
main classes: the L1/L2-sensitivity minimization [1]-[5] and
the L2-sensitivity minimization [6]-[11]. It is noted that the
sensitivity measure based on the L2 norm is more natural and
reasonable relative to the L1/L2-sensitivity measure. It is well
known that applying the L2-scaling constraints to a state-space
digital filter is beneficial for suppressing overflow oscillation
[12],[13]. However, not enough research has been done on
the minimization of the L2-sensitivity subject to the L2-norm
dynamic-range scaling constraints [11].

In this paper, the problem of minimizing the L2-sensitivity
measure subject to L2-norm dynamic-range scaling constraints
is investigated for state-space digital filters. To this end, an
expression for evaluating the L2-sensitivity is introduced. An
L2-sensitivity minimization problem subject to the scaling
constraints is formulated. An iterative algorithm is then de-
veloped to solve the constraint optimization problem directly.
Unlike the work reported in [11], the proposed iterative
technique relies on neither converting the problem into an
unconstrained optimization one nor using a quasi-Newton
algorithm. From computer simulation results, it has turned

out that the proposed iterative technique requires less than half
amount of computations to attain almost the same convergence
accuracy as compared to the technique reported in [11].

Throughout In denotes the identity matrix of dimension
n×n. The transpose (conjugate transpose) of a matrix A and
trace of a square matrix A are denoted by AT (A∗) and tr[A],
respectively. The ith diagonal element of a square matrix A
is denoted by (A)ii.

II. L2-SENSITIVITY ANALYSIS

Consider a state-space digital filter (A, b, c, d)n which is
stable, controllable and observable

x(k + 1) = Ax(k) + bu(k)

y(k) = cx(k) + du(k)
(1)

where x(k) is an n × 1 state-variable vector, u(k) is a
scalar input, y(k) is a scalar output, and A, b, c and d are
real constant matrices of appropriate dimensions. The transfer
function of the filter in (1) is given by

H(z) = c(zIn − A)−1b + d. (2)

The L2-sensitivity of the filter in (1) is defined as follows.
Definition 1 : Let X be an m×n real matrix and let f(X)

be a scalar complex function of X, differentiable with respect
to all the entries of X. The sensitivity function of f with
respect to X is then defined as

SX =
∂f

∂X
, (SX)ij =

∂f

∂xij
(3)

where xij denotes the (i, j)th entry of matrix X .
Definition 2 : Let X(z) be an m×n complex matrix-valued

function of a complex variable z and let xpq(z) be the (p, q)th
entry of X(z). The L2-norm of X(z) is then defined as

‖X(z)‖2 =

[
1
2π

∫ 2π

0

m∑
p=1

n∑
q=1

∣∣xpq(ejω)
∣∣2 dω

] 1
2

=

(
tr

[
1

2πj

∮
|z|=1

X(z)X∗(z)
dz

z

]) 1
2

.

(4)
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From (2) and Definitions 1 and 2, the overall L2-sensitivity
measure for the filter in (1) is defined as

S =
∥∥∥∥∂H(z)

∂A

∥∥∥∥
2

2

+
∥∥∥∥∂H(z)

∂b

∥∥∥∥
2

2

+
∥∥∥∥∂H(z)

∂cT

∥∥∥∥
2

2

=
∥∥[F (z)G(z)] T

∥∥2

2
+

∥∥∥GT (z)
∥∥∥2

2
+ ‖F (z)‖2

2

(5)

where

F (z) = (zIn − A)−1b, G(z) = c(zIn − A)−1.

The term d in (2) and the sensitivity with respect to it are
coordinate-independent and therefore they are neglected here.

It is easy to show that the L2-sensitivity measure in (5) can
be expressed as

S = tr[M(In)] + tr[W o] + tr[Kc] (6)

where

Kc =
1

2πj

∮
|z|=1

F (z)F T (z−1)
dz

z

W o =
1

2πj

∮
|z|=1

GT (z)G(z −1)
dz

z

M(P ) =
1

2πj

∮
|z|=1

[F (z)G(z)] T P−1F (z−1)G(z−1)
dz

z
.

The matrices Kc and W o are called the controllability and
observability Gramians, respectively. The Gramians Kc, W o

and M(P ) with P = In can be obtained by solving the
Lyapunov equations [14]

Kc = AKcA
T + bbT

W o = AT W oA + cT c

Y =
[

A bc
0 A

]T

Y

[
A bc
0 A

]
+

[
P−1 0
0 0

] (7)

and taking the lower-right n × n block of Y as M(P ), i.e.,

M(P ) =
[

0 In

]
Y

[
0
In

]
. (8)

If a coordinate transformation defined by

x(k) = T −1x(k) (9)

is applied to the filter in (1), then the new realization
(A, b, c, d)n can be characterized by

A = T −1AT , b = T −1b, c = cT

Kc = T−1KcT
−T , W o = T T W oT .

(10)

From (2) and (10), it is clear that the transfer function
H(z) is invariant under the coordinate transformation in (9).
Noting that the coordinate transformation in (9) transforms the
Gramian M(In) into T T M(P )T , the L2-sensitivity measure
in (6) is changed to

S(P ) = tr[M (P )P ] + tr[W oP ] + tr[KcP
−1] (11)

where P = TT T .

Moreover, if the L2-norm dynamic-range scaling constraints
are imposed on the new state-variable vector x(k), it is
required that for i = 1, 2, · · · , n

(Kc)ii = (T −1KcT
−T )ii = 1. (12)

The problem of L2-sensitivity minimization subject to L2-
norm dynamic-range scaling constraints is now formulated as
follows: For given A, b and c, obtain an n × n nonsingular
matrix T which minimizes (11) subject to the scaling con-
straints in (12).

III. L2-SENSITIVITY MINIMIZATION

The problem of minimizing S(P ) in (11) subject to the
constraints in (12) is a constrained nonlinear optimization
problem where the variable matrix is P . If we sum the n
constraints in (12) up, then we have

tr[T−1KcT
−T ] = tr[KcP

−1] = n. (13)

Consequently, the problem of minimizing (11) subject to the
constraints in (12) can be relaxed into the following problem:

minimize S(P ) in (11)

subject to tr[KcP
−1] = n.

(14)

Although clearly a solution of problem (14) is not necessarily
a solution of the problem of minimizing (11) subject to the
constraints in (12), it is important to stress that the ultimate
solution we seek for is not matrix P but a nonsingular matrix
T that is related to the solution of the problem of minimizing
(11) subject to the constraints in (12) as P = TT T . If matrix
P is a solution of problem (14) and P 1/2 denotes a matrix
square root of P , i.e., P = P 1/2P 1/2, then it is easy to see
that any matrix T of the form T = P 1/2U where U is an
arbitrary orthogonal matrix still holds the relation P = TT T .
As will be shown shortly, under the constraints in (12) there
exists an orthogonal matrix U such that matrix T = P 1/2U
satisfies the constraints in (12), where P 1/2 is a square root
of the solution matrix P for problem (14).

It is for these reasons we now address problem (14) as the
first step of our solution strategy. To solve (14), we define the
Lagrange function of the problem as

J(P , λ) = tr[M(P )P ] + tr[W oP ]

+tr[KcP
−1] + λ(tr[KcP

−1] − n)
(15)

where λ is a Lagrange multiplier. It is well known that the
solution of problem (14) must satisfy the Karush-Kuhn-Tucker
(KKT) conditions ∂J(P , λ)/∂P = 0 and ∂J(P , λ)/∂λ = 0
where the gradients are found to be

∂J(P , λ)
∂P

= M(P ) − P −1N(P )P −1 + W o

−(λ + 1)P −1KcP
−1

∂J(P , λ)
∂λ

= tr[KcP
−1] − n

(16)
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where N(P ) is obtained by solving the Lyapunov equation

Z =
[

A bc
0 A

]
Z

[
A bc
0 A

]T

+
[

0 0
P 0

]
and then taking the upper-left n × n block of Z, i.e.,

N(P ) =
[

In 0
]
Y

[
In

0

]
.

Hence the KKT conditions become

P F (P )P = G(P , λ), tr[KcP
−1] = n (17)

where
F (P ) = M(P ) + W o

G(P , λ) = N(P ) + (λ + 1)Kc.

The first equation in (17) is highly nonlinear with respect to
P . An effective approach to solving the first equation in (17)
is to relax it into the following recursive second-order matrix
equation:

P i+1F (P i)P i+1 = G(P i, λi) (18)

where P i is assumed to be known from the previous recursion
and the solution P i+1 is given by [10]

P i+1 =F (P i)−
1
2 [F (P i)

1
2 G(P i, λi)F (P i)

1
2 ]

1
2 F (P i)−

1
2 .
(19)

To derive a recursive formula for the Lagrange multiplier λ,
we use (17) to write

tr[PF (P )] = tr[N (P )P−1] + n(λ + 1) (20)

which naturally suggests the following recursion for λ:

λi+1 =
tr[P iF (P i)] − tr[N (P i)P−1

i ]
n

− 1. (21)

In the above algorithm, λi is the solution of the previous
iteration. The initial estimates are given by P 0 = In and
any value of λ0 > 0. This iteration process continues until
(17) is satisfied within a prescribed numerical tolerance.

As the second step of the solution strategy, we now turn
our attention to the construction of the optimal coordinate
transformation matrix T that solves the problem of minimizing
(11) subject to the constraints in (12). As analyzed earlier, the
optimal T assumes the form

T = P
1
2 U (22)

where P 1/2 is the square root of the matrix P obtained above,
and U is an n × n orthogonal matrix to be determined as
follows. From (10) and (22) it follows that

Kc = T −1KcT
−T

= U T P− 1
2 KcP

− 1
2 U .

(23)

In order to find an n × n orthogonal matrix U such that the
matrix Kc in (23) satisfies the scaling constraints in (12),
we perform the eigenvalue-eigenvector decomposition for the
positive definite matrix P−1/2KcP

−1/2 as

P− 1
2 KcP

− 1
2 = RΘRT (24)

where Θ = diag{θ1, θ2, · · · , θn} with θi > 0 and R is an
orthogonal matrix. Next, an orthogonal matrix S such that

SΘST =

⎡
⎢⎢⎢⎢⎣

1 ∗ · · · ∗
∗ 1

. . .
...

...
. . .

. . . ∗
∗ · · · ∗ 1

⎤
⎥⎥⎥⎥⎦ (25)

can be obtained by numerical manipulations [13, p.278].
Using (23), (24) and (25), it can be readily verified that the
orthogonal matrix U = RST leads to a Kc in (23) whose
diagonal elements are equal to unity, hence the constraints in
(12) are now satisfied. This matrix T together with (22) gives
the solution of the problem of minimizing (11) subject to the
constraints in (12) as

T = P
1
2 RST . (26)

IV. NUMERICAL EXAMPLE

Let a state-space digital filter in (1) be specified by

A =

⎡
⎣ 0 1 0

0 0 1
0.453770 −1.556160 1.974860

⎤
⎦

b =
[

0 0 0.242096
]T

c =
[

0.095706 0.095086 0.327556
]

d = 0.015940.

Performing the computation of (7) and (8), the Gramians Kc,
W o and M (I3) are calculated as

Kc =

⎡
⎣ 1.000000 0.872501 0.562821

0.872501 1.000000 0.872501
0.562821 0.872501 1.000000

⎤
⎦

W o =

⎡
⎣ 0.820741 −2.035328 1.628161

−2.035328 5.307273 −4.264903
1.628161 −4.264903 3.941491

⎤
⎦

M(I3) =

⎡
⎣ 8.921380 −22.046457 17.916285
−22.046457 55.671710 −46.052011

17.916285 −46.052011 42.522082

⎤
⎦.

The L2-sensitivity measure in (6) is computed as

S = 120.184677.

Choosing P 0 = I3 and λ0 = 100 as the initial estimates,
it took the proposed iterative algorithm 500 iterations to
converge to

P opt =

⎡
⎣ 2.307529 1.375667 0.514400

1.375667 1.103115 0.678193
0.514400 0.678193 0.666912

⎤
⎦

which yields

T opt =

⎡
⎣ 0.906372 0.756223 0.956110

0.196978 0.857123 0.574155
−0.369823 0.597630 0.415910

⎤
⎦ .
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Fig. 1. L2-Sensitivity and λ Performances

In this case, M(P ) is computed from (7) and (8) as

M (P )=

⎡
⎣ 1.908677 −0.301984 −1.313686
−0.301984 1.701052 0.430349
−1.313686 0.430349 1.395025

⎤
⎦

and the L2-sensitivity measure in (11) is minimized subject to
the scaling constraints in (12) to

S(P opt) = 8.672129.

The L2-sensitivity and λ performances of 500 iterations are
shown in Fig.1, from which it is seen that the proposed
iterative algorithm sufficiently converges with 500 iterations.

For comparison purposes, only the iterative algorithm in
(19) is applied by letting λi = 0 for any i and setting
P 0 = I3 to minimize the L2-sensivivity measure in (11)
(without considering the scaling constraints in (12)) and after
500 iterations it converges to

P =

⎡
⎣ 4.774934 2.835816 1.053819

2.835816 2.287705 1.415049
1.053819 1.415049 1.403809

⎤
⎦

which yields

T =

⎡
⎣ 2.185162 0.0 0.0

1.297760 0.776868 0.0
0.482261 1.015861 0.373174

⎤
⎦

and S(P ) = 7.832680. The above coordinate transformation
matrix T is then scaled by an appropriate nonsingular diagonal
matrix, so that the scaling constraints in (12) are satisfied. Then
the result is

S(P ) = 9.822372

where P = TT T and

T =

⎡
⎣ 1.0 0.0 0.0

0.593896 0.562461 0.0
0.220698 0.735495 0.307225

⎤
⎦ .

Applying the technique reported in [11] yields

S(P ) = 8.683279.

Moreover, by applying the method in [13], the coordinate
transformation matrix T which yields the optimal filter struc-
ture is constructed as

T =

⎡
⎣ −0.605406 −0.119653 1.219423

0.107851 0.097317 0.941720
0.540830 −0.071898 0.569047

⎤
⎦

which minimizes the roundoff noise at the filter output subject
to the scaling constraints in (12). The L2-sensitivity of the
optimal filter structure is computed as

S(P ) = 8.797931.

VI. CONCLUSION

This paper has considered the problem of minimizing an L2-
sensitivity measure subject to L2-norm dynamic range scaling
constraints for state-space digital filters. An efficient iterative
technique has been developed by using a Lagrange function
and some matrix-theoretic techniques in order to solve the con-
straint optimization problem directly. Our computer simulation
results have demonstrated the effectiveness of the proposed
technique compared with several existing methods.
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