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ABSTRACT

Multiple Measurement Vector (MMV) is a newly emerged

problem in sparse representation in an over-complete dictio-

nary; it poses new challenges. Efficient methods have been

designed to search for sparse representations [1, 2]; how-

ever, we have not seen substantial development in the theo-

retical analysis, considering what has been done in a simpler

case—Single Measurement Vector (SMV)—in which many

theoretical results are known, e.g., [9, 3, 4, 5, 6]. This paper

extends the known results of SMV to MMV.

Our theoretical results show the fundamental limitation

on when a sparse representation is unique. Moreover, the

relation between the solutions of �0-norm minimization and

the solutions of �1-norm minimization indicates a compu-

tationally efficient approach to find a sparse representation.

Interestingly, simulations show that the predictions made by

these theorems tend to be conservative.

1. INTRODUCTION

The problem of sparse representations for Multiple Mea-

surement Vectors (MMV) in an over-complete dictionary is

motivated by a neuro-magnetic inverse problem that arises

in Magnetoencephalography (MEG)—a modality for imag-

ing the possible activation regions in the brain [1].

An MMV problem can be described as the following

linear algebra problem: given multiple measurement vec-

tors B and a dictionary A, one wants to solve the following

systems of equations:

AX = B,

where A ∈ Rm×n,X ∈ Rn×L, and B ∈ Rm×L. Fol-

lowing tradition, we consider the columns of the matrix A
forming a dictionary. An over-complete dictionary sim-

ply means that n > m. Usually, we have m � n and

L < m. When L = 1, we have the case of Simple Mea-

surement Vector (SMV). We assume that the columns of

A have been normalized. Matrices X and B can be rep-

resented in the form: X = [x(1), x(2), . . . , x(L)], B =
[b(1), b(2), . . . , b(L)], where x(l)’s and b(l)’s, 1 ≤ l ≤ L, are

column vectors. Obviously, the systems of equations can be

rewritten as: Ax(l) = B(l), l = 1, . . . , L.
The desired property of a solution matrix X (or a vec-

tor, if one has SMV) is that the number of rows containing

nonzero entries is small ([1]). A mathematical definition

will appear later.

There is abundant literature on the searching of sparse

representations in over-complete dictionaries in the SMV

case. The Introduction section of [7] gives a comprehensive

description of many important applications. In the SMV

case, we replace X and B by their lower letters—x and b,

emphasizing that they are vectors instead of matrices.

In SMV, the sparsity of a representation is defined as

the �0 norm of the vector x, which is denoted by ‖x‖0. The

‖x‖0 is equal to the number of non-zero elements in the

vector x. A sparse representation can be found by solving

the following non-convex optimization problem:

(Q0) : min ‖x‖0, s.t. Ax = b.

The above problem can be convexified as a �1-norm

minimization problem, and solved via linear programming.

The �1-norm minimization problem is

(Q1) : min ‖x‖1, s.t. Ax = b.

Note that the problem (Q0) is a combinatorial optimiza-

tion problem, which can be extremely difficult to solve. We

hope that the solution to the problem (Q1) is, in some sense,

close enough to the solution of (Q0). The equivalence of

the solutions between (Q0) and (Q1) has been proved under

certain conditions, and the most recent work is [6]. Such an

equivalence is very important in searching for sparse repre-

sentations in SMVs. In this paper, we generalize the corre-

sponding results to the case of MMV.

Another way to get a sparse representation is through

an algorithm named Orthogonal Matching Pursuit (OMP).

It has been proved that OMP can find the exact sparsest

representation of a signal in certain cases [7]. In this pa-

per, we generalize this result to the cases of MMV as well.

Moreover, a modified version is introduced, to improve its

theoretical property.
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The rest of the paper is organized as follows. Section

2 describes the uniqueness of the solutions when the most

straightforward approach—minimizing the �0 norm — is

adopted. Section 3 describes when the solutions of the �1-

norm minimization approach are identical to the solutions of

the �0-norm minimization approach. Section 4 describes the

property of the sparse representations that are provided by

a greedy algorithm—Orthogonal Matching Pursuit (OMP)

and a modified version.

Due to space, most of the proofs are omitted or simpli-

fied as a narrative description.

2. �0 NORM SOLUTIONS

2.1. Formulation

A noiseless sparse representation problem in MMV can be

written as

(P0) : min

∥∥∥∥∥∥

⎛
⎝

L∑
j=1

|xij |
⎞
⎠

i∈Ω

∥∥∥∥∥∥
0

, Ω = {1, · · · ,m}.

s.t AX = B,

The sum of the absolute values of entries at each row

is used to measure the common sparsity of all the columns;

i.e., ‖(∑L
j=1 |xij |)i∈Ω‖0 counts only the number of rows

that contain nonzeros. Readers can compare this with (Q0).
In general, to find the solution of (P0) requires enumer-

ating all the subsets of the set {1, 2, . . . , n}. The complex-

ity of such a subset-search algorithm grows exponentially

¿¡DEFANGED.76284 with the dictionary size n.

2.2. Uniqueness of �0 Minimization

We restrict our attention to the case when the solution to

(P0) is unique. We prove that a highly sparse representation

must be the sparsest possible representation, and give some

conditions under which the solution to (P0) is unique. This

is a necessary preparation for the subsequent results (e.g.,

equivalence between two methods).

The following is highly parallel to the results in paper

[6]. We start with the concept of Spark.

Definition 2.1 Spark: Given a matrix A, its Spark S(A)
(= σ) is the smallest possible integer such that there exist σ
columns of matrix A that are linearly dependent.

In [6], S(A)/2 is a threshold of the sparsity: if the sig-

nal is represented by no more than S(A)/2 atoms—i.e. if

the signal is a linear combination of no more than S(A)/2
columns of matrix A—then the solution of (Q0) corresponds

exactly to this linear combination.

For MMV, an identical conclusion can be made, although

the proof is slightly harder. Due to space, we only state the

result, and leave all the proofs to our article [8].

Theorem 2.2 Matrix X is the unique solution of the prob-
lem (P0), if B = AX and

∥∥∥∥∥∥
(

L∑
j=1

|xij |)i∈Ω

∥∥∥∥∥∥
0

< S(A)/2.

The problem with the above upper bound, S(A)/2, is

that the quantity Spark itself is hard to calculate. Up to now,

there was no efficient algorithm for computing it except

enumerating all the possible subsets. For practical use, we

introduce another quantity: mutual coherence. This quan-

tity has appeared in previous papers, e.g., [3, 4, 6]. It gives

an upper bound that is lower than Spark’s.

Definition 2.3 Mutual coherence (denoted by M ) is the max-
imum absolute inner product between two atoms; i.e.,

M = M(A) = max
1≤i,j≤n,i�=j

|G(i, j)|,

where Gram matrix G = AT A.

Similar to Theorem 2.2, we have the following result for

mutual coherence.

Theorem 2.4 Matrix X is the unique solution of (P0), if
B = AX and ‖(∑L

j=1 |xij |)i∈Ω‖0 < (1 + M−1)/2.

Note that M and Spark have the following relationship

[6]:

S(A) ≥ (1 + 1/M).

Therefore, the bound of S(A)/2 is better. We can use The-

orem 2.2 and this relationship to prove Theorem 2.4. How-

ever, in our paper [8], Theorem 2.4 is proved without using

Spark.

3. �1 NORM SOLUTIONS

3.1. Model

Due to the computational complexity of the �0-norm min-

imization problem, minimizing the �1-norm was proposed

as an alternative. The �1-norm minimization problem can

be formulated as follows:

(P1) : min
n∑

i=1

L∑
j=1

|xij | =

∥∥∥∥∥∥

⎛
⎝

L∑
j=1

|xij |
⎞
⎠

i∈Ω

∥∥∥∥∥∥
1

.

s.t AX = B,

This is a convex optimization problem, and can be cast

as a linear programming problem, which is solvable via,

e.g., simplex or interior point methods. (P1) can be viewed

as a convexification of (P0). This idea is well documented

in the literature, e.g., [9, 3, 4, 5, 6, 7, 10].
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Besides the �1 norm, other functions of X have been

proposed as objective functions. In works that are related to

MMV, e.g., [1] and [11], the following diversity measure on

sparsity was proposed:

J (p,q)(x) =
n∑

i=1

(‖x(i)‖q)p, 0 ≤ p ≤ 1, q ≥ 1,

where p and q are parameters, vector x(i) is the ith row

of matrix X; the norm of a row is given by ‖x(i)‖q =
(
∑L

j=1 |xij |q)1/q . An algorithm, which was named

M-FOCUSS, is proposed to minimize the above objective,

with q = 2, p >< DEFANGED.76285 ≤ 1. It uses

the idea of Lagrange multipliers, as well as iterations. A

disadvantage of M-FOCUSS is that this iterative algorithm

could be trapped by a local minimum, since its objective

function is generally non-convex. With p = 1, q = 1 in

the above objective, we obtain the �1 norm minimization

problem (P1). An immediate advantage is that (P1) can be

solved via linear programming, which has been extensively

developed and has handy softwares. Furthermore, under

certain conditions, we will prove that the solutions of (P1)
and (P0) are equivalent.

3.2. Uniqueness and Equivalence of �1 Norm Minimiza-
tion

We give the conditions under which the �0 solution and �1

solutions are identical. Three different thresholds for this

purpose are introduced. These three thresholds also apply to

the SMV problem, [6, 10]. However, for MMV, we need to

consider the sum of absolute values of each row in addition.

Therefore the proofs are different. Again, for proofs please

refer to [8].

Using a previously defined quantity—mutual coherence

M—the uniqueness of �1 norm minimization as well as the

equivalence between the �1 solution and �0 solution can be

established as follows.

Theorem 3.1 For a dictionary A and its Gram matrix G,
let M be its mutual coherence that was defined earlier. If
AX = B and ‖(∑L

j=1 |xij |)i∈Ω‖0 < (1+1/M)/2, then X
is the unique solution of (P1), and this solution is identical
to the solution of (P0).

Note that the upper bound, (1 + 1/M)/2, is the same as

the one in Theorem 2.4.

In the following, two more conditions are provided. They

emphasize different aspects of the problem.

Definition 3.2 For G a symmetric matrix, let µ1/2(G) de-
note the smallest number m such that some collection of m
off-diagonal magnitudes in a single row or column of the
matrix G sums at least to 1/2.

Recall that in a Gram matrix, all diagonal entries are

equal to 1. The following establishes a new condition that

is based on quantity µ1/2(G).

Theorem 3.3 For a dictionary A and its Gram matrix G, if
AX = B and ‖(∑L

j=1 |xij |)i∈Ω‖0 < µ1/2(G), then X is
the unique solution of (P1), and this solution is identical to
the solution of (P0).

It is straightforward to derive the following relation be-

tween M and µ1/2(G): 1
2M ≤ µ1/2. Note that none of the

thresholds, µ1/2(G) and (1 + 1/M)/2, can dominate the

other one.

The following condition assumes that an optimal solu-

tion of (P0) is known. We consider X∗ is the unique so-

lution to (P1). Let S be the index set of rows of X∗ that

contain nonzero entries. Let AS denote a matrix that is

made by the columns of the matrix A with index set S.

Let matrix (AS)+ be the generalized inverse of matrix AS :

(AS)+AS = Iσ, where σ = R(X∗), which also is the size

of set S. Apparently, we can assume that matrix AS is of

the full column rank, then we have the following lemma.

Theorem 3.4 (1) Consider a column index j of the matrix
A, satisfying j /∈ S. Assume the columns of matrix AS are
linearly independent. If

‖(AS)+Aj‖1 < 1, ∀j /∈ S, (1)

then X∗ is the unique solution of (P1).
(2) If for any matrix AS′

(AS′ �= AS) that is made by σ
columns of matrix A, there is a nonzero vector c ∈ Rσ , such
that

∑L
i=1 |ci| > 0 (i.e., there is a nonzero element among

the first L entries of vector c) and

cT P · (AS)+ · AS′
= �01×σ,

where �01×σ is a 1 by σ vector that is made by zeros and P
is a matrix that was specified earlier, then matrix X∗ is the
unique solution of problem (P0).

(3)If conditions that were described in (1) and (2) are
satisfied, then matrix X∗ is a unique solution to both (P0)
and (P1).

4. ORTHOGONAL MATCHING PURSUIT

To solve an MMV problem, in [1], Orthogonal Matching

Pursuit (OMP) was introduced. Due to space, we omit all

the details, and refer to the original paper. In [8], it is proved

that the original OMP is equivalent to the following proce-

dure. The notation in the following is the same as in the

original description [1].

An Equivalent Form of the Original OMP

1. Initialization: residual R0 = B.
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2. At the pth iteration:

(a) Choose the atom akp , which satisfies

akp = argmaxak
‖zk‖2, where zk = RH

p−1ak;

(b) Let Sp = [Sp−1, akp ], S0 = ∅, and

X∗ = argminX‖SpX − B‖2
F , yp = SpX∗.

(c) Set Rp = B − yp.

We prove that the above is equivalent to the original

OMP [8]. This equivalent form of OMP is then used to

prove the following theorem, which shows that OMP can

recover the sparsest representation in MMV exactly.

Definition 4.1 Support(A): The support of a matrix A is
the set of the indices of rows containing nonzero entries.

Theorem 4.2 By OMP, when
∥∥∥∥∥∥
(

L∑
j=1

|x∗
ij |)i∈Ω

∥∥∥∥∥∥
0

≤ 1 + M

(1 +
√

L)M
,

we have Support(XOMP)=Support(XOPT), where XOPT
is the sparest representation, and XOMP is the result of
OMP.

The above can be called a theorem of “exact recovery”.

We propose a modified version of OMP. With this modified

algorithm, the threshold of the sparsity for the ‘exact recov-

ery’ can be improved.

Our modified OMP makes a small change in the first

step of the equivalent form of OMP. At every iteration, we

choose the atom akp
that satisfies maxak

‖RH
p−1ak‖1 in-

stead of maxak
‖RH

p−1ak‖2 as in the original OMP.

Similar to the theorem for the original OMP, the theorem

about the condition of the ‘exact recovery’ of the sparest

representation for the modified OMP can be established.

Theorem 4.3 By the modified OMP, when
∥∥∥∥∥∥
(

L∑
j=1

|x∗
ij |)i∈Ω

∥∥∥∥∥∥
0

≤ 1 + M

2M
,

we have Support(XMOMP)=Support(XOPT), where
XMOMP is the result of the modified OMP.

Compared with the upper bound, 1+M
(1+

√
L)M

, in the origi-

nal OMP, the new upper bound of the modified OMP, 1+M
2M ,

is better.

5. SIMULATION AND DISCUSSION

In our simulations, we applied �1-norm minimization and the mod-

ified OMP to the simulated data, and it was found that the above

mentioned upper bounds using M are usually too relaxed. In many

finite situations, even though the sparsity of the optimal solution

is well above these theoretical upper bounds, the uniqueness and

equivalence can still hold. Due to space, we have to omit a detailed

description.

What we have considered is the noiseless version of the sparse

representation problem. Recently, advances have been made in

the noisy version of these problems, [7, 12]. The latter is more

meaningful, because in practice, numerical solutions always con-

tain round off errors. Developing parallel theorems in the noisy

case is an interesting research topic.

Due to space, all proofs are postponed to our paper [8].
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