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ABSTRACT 

The Bezier curve is fundamental to many challenging and 

practical applications, ranging from computer aided geometric 

design and postscript font representations through to generic 

object shape descriptors and surface representation. A drawback 

of the Bezier curve however, is that it only considers global 

information about the control points, so there is often a large gap 

between the curve and its control polygon, leading to considerable 

error in curve representations. To address this issue, this paper 

presents enhanced Bezier curve (EBC) models which seamlessly 

incorporate local information. The performance of the models is 

empirically evaluated upon a number of natural and synthetic 

objects having arbitrary shape and both qualitative and 

quantitative results confirm the superiority of both EBC models in 

comparison with the classical Bezier curve representation, with no 

increase in the order of computational complexity.  

   Index Terms – Bezier curve, Global information, Control 

Polygon, Local information, Centre of Gravity.

1. INTRODUCTION

Bezier curves were developed by Casteljau [1] and Bézier [2], and 

have been applied to many computer-aided design (CAD) 

applications. While their origin can be traced back to the design of 

car body shapes, their usage is no longer confined to this field. 

Indeed, their robustness in curve and surface representation means 

many variations have evolved, including recently into areas such 

as shape description of characters [3-4] and objects [5], shape 

error concealment for MPEG-4 objects [6] and surface mapping 

[7-8].  

   A Bezier curve is defined in terms of a set of control points, 

though it only considers global information [9] and calculates the 

curve points in a linear recursive approach starting with the edges 

of the control polygon. Frequently, there is a large gap between 

the Bezier curve and its control polygon, which restricts the 

maximum length of a curve segment. To represent complex 

curves, more curve segments and hence more control points are 

required. Moreover, to approximate a given shape most control 

points have to be defined outside the original shape which will not 

necessarily be inside the coordinate system, thereby increasing the 

computational overhead of the Bezier curve for many applications. 

A higher-degree Bezier curve obviously provides a better shape 

representation. Degree elevation [10] has been applied to form a 

curve with an increased number of control points, though all these, 

bar the end points, have to be relocated incurring significant 

computational cost. Subdivision and refinement techniques have 

been introduced to minimize the gap between the Bezier curve and 

its control polygon. When the control points are known, a set of 

new control points that are closer to the curve is defined using 

subdivision algorithms such as midpoint [11] or generalized

arbitrary Bezier [12]. These algorithms however, increase the 

number of curve segments along with the number of points and to 

ensure the requisite conjoint curve segments, the number of 

subdivisions has also to be constrained.  

   All the aforementioned algorithms minimize the distance 

between the Bezier curve and its control polygon by increasing the 

number of control points. For multimedia communications this 

means a higher coding and transmission overhead to represent a 

particular shape. This paper introduces two enhanced Bezier curve

(EBC) models which incorporate local information within the 

classical Bezier curve framework, and incur no increase in 

computational complexity. It is noteworthy that both models can 

be seamlessly integrated into all refinement algorithms including 

degree elevation and subdivision. It has also been shown that the 

EBC models retain all the central properties of the classical Bezier 

curve. The performance of EBC as a generic shape descriptor for a 

number of different natural shapes as well as different polygons 

was analyzed using both objective and subjective metrics, with 

results clearly confirming its superiority compared with the 

original Bezier curve [1-2].   

   The remainder of the paper is organized as follows: Section 2 

provides a short overview of the classical Bezier curve, while 

Section 3 discusses the theoretical basis of the new EBC models 

along with proofs that all the key properties of the Bezier curve 

are retained. Section 4 presents experimental results confirming 

the superior performance of EBC models relative to the original 

Bezier curve, with some conclusions given in Section 5. 

2. OVERVIEW OF THE CLASSICAL BEZIER CURVE

The Bezier curve is a recursive linear weighted subdivision of the 

edges of the generated polygon starting with a set of points to 

form the initial polygon and ends iteration when the final point is 

generated. The set of 1N starting points is referred to as the 

control points which govern the characteristics of the Bezier curve 

of degree N . The polygon connecting the control points is called 

the control polygon. The Casteljau form of the Bezier curve for an 

ordered set of control points NpppP ,,, 10  is defined as:- 
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where u is the weight of subdivision and determines the number of 

points on the Bezier curve. The final generation )(0 upN  is called 

the Bezier curve of P .
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Figure 1: A quadratic Bezier 

curve illustrating the gap. 
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Figure 1 shows the quadratic 

Bezier curve produced using the 

control points 210 ,, ppp . There is 

a large gap between the Bezier 

curve approximation and its 

control polygon which represents 

a significant shape distortion due 

to the Bezier curve 

considering only global 

information.

For 5.0u , the inner part of BAp1 is never reached and point C  is 

generated on line AB . To reduce this gap, a number of refinement 

techniques have been proposed [10-12], which require an 

increased number of control points. To minimize the gap between 

the curve and its control polygon without increasing the number of 

control points, it is required to move the Bezier point 

inside BAp1 . The next section introduces a novel strategy to 

achieve this objective.

3. NEW ENHANCED BEZIER CURVE (EBC) MODELS

INCORPORATING LOCAL INFORMATION

In this section, the quadratic Bezier curve will firstly be presented 

before being generalized for any arbitrary degree. To minimize the 

gap between the Bezier curve and its control polygon, the centre 

of gravity (CoG) G  of BAp1  in Figure 1 is exploited in shifting 

a specific point generated by the original Bezier curve. If this  

point for a particular u  is moved directly to the CoG, two major 

problems arise:- 1) the generated curve will not be smooth as all 

the generated points are confined to a small region of the curve 

since control point 1p  is common and so has a significant 

influence in all triangles; 2) End-point interpolation, which is one 

of the important properties of the Bezier curve is not satisfied, 

since for terminal values 10 uoru , the CoGs can never be 

end control points.   

5 10 15 20
4

6

8

10

12

p0

p1

p2

G

P

Q

R

Bezier (P)

EBC (Q)

EBC-n (R)

A

B

5 10 15 20 25
2

4

6

8

10

12

14

p0

p1

p2

p3

A

B

C

Q1 Q2

        (a)               (b) 

Figure 2: Enhanced Bezier Curve for a) Quadratic; b) Cubic.

   To obtain a smooth curve, all generated points must be well 

distributed over the entire curve. This is achieved by generating a 

point using a suitably weighted linear interpolation between the 

Bezier curve point and its CoG. If uu 1:  is used as the 

interpolation weighting factor, the end-point interpolation property 

for the last control point will not be upheld for the reason 

discussed above, since the generated point is shifted to the CoG of 

the corresponding triangle. However, as will be proven in Lemma 

1, the ratio )1(1:)1( uuuu  for a Bezier curve point and its CoG 

concomitantly guarantees the end-point interpolation criteria and 

ensures a smooth curve. This technique of shifting a Bezier curve 

point by using the above ratio is called the enhanced Bezier curve

(EBC) and is pictorially depicted in Figure 2(a), where P  is the 

Bezier curve point for 3.0u  and G  is the CoG of BAp1 . In the 

new EBC model, P  moves to any point along the line PG . The 

actual shifted amount Q  is such that it segments line PG  so 

79.0:21.0)1(1:)1(: uuuuQGPQ , and the quadratic EBC is 

formulated as:- 
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where 210 ,, ppp is the set of control points. 

   The cubic EBC is explained by Figure 2(b). Points 1Q and 2Q

are generated using the quadratic Bezier described above for 

control point sets 210 ,, ppp and 321 ,, ppp  respectively. A new 

quadratic control polygon is then formed with 21 ,, QBQ , where B

is the weighted )(u  interpolation of successive initial control 

points 1p  and 2p , and the final curve point is generated by 

quadratic EBC with control points 21 ,, QBQ .    

   The quadratic EBC can be extended for an arbitrary degree N by 

using successively generated quadratic EBC points along with 

polygon point to form another quadratic EBC until it converges to 

a single point. It can be formulated recursively as:-
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The first and last control points of the required three control points 

to form a quadratic curve are chosen from the generated EBC 

points in the previous iteration and the middle control point 

)(usr
i is selected from either the initial control points or the 

interpolation point by (4), so )(2
0 upN is the resulting EBC.  

   Due to the low value of )1( uu  in EBC, the displacement of a 

Bezier curve point towards the CoG is small. To ensure a larger 

displacement, i.e. reduce the gap between the generated curve and 

control polygon, )1( uu  is normalized as follows:- 

5.025.0)1(max
1,10
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              (5) 

So the normalized ratio becomes 25.0/)1(1:25.0/)1( uuuu .

For a particular value 5.0u , P  is shifted to the CoG of the 

triangle, so it ensures a smooth curve as the generated points are 

well distributed over the entire curve and also reduce the gap 

between the curve and the control polygon. Using the normalized 

parameter, the EBC model is referred to as the EBC-n. For 3.0u ,

R  is the EBC-n point shown in Figure 2(a), where the ratio 

is 16.0:84.0: RGPR . Applying the same rationale as in the EBC, 

the generic EBC-n form can be expressed as:-  
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All other conditions in (6) are the same as in (3). 
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Figure 4: Curves using 

Bezier subdivisions.

   As the foundations of both EBC models are underpinned by 

classical Bezier curve theory, all properties [9] are preserved. The 

following examines some of these properties, where without loss 

of generality, all proofs are provided for the EBC model.

Lemma 1: End point interpolation: The EBC always passes 

through its first and last control points. 

Proof: Any Bezier curve interpolates its end points [9] for the 

starting ( 0u ) and end ( 1u ) control points.  EBC makes a 

parametric shift of the original Bezier curve point towards the 

CoG by the ratio )1(1:)1( uuuu . For both 0u  and 1u ,

1:0)1(1:)1( uuuu , which means the endpoints will not be 

shifted in EBC. This is evident in (2) and (3) i.e. 

0)0( pp and Npp )1( .   

Lemma 2: Convex Hull Property: The EBC lies within the 

convex hull of its control points. 

Proof: Suppose a curve is defined as 0;)()(
0

k
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where kp is the k -th control point. If ,;1)(
0
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EBC curves in (3) can be written as upuup
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lies on the control polygon. So any EBC point will lie within the 

corresponding triangle and thus EBC lies within the convex hull 

of the control points. 

Lemma 3: Affine Invariance: EBC curve is invariant under affine 

transformations.

Proof: A curve is affine invariant if the curve drawn with affine 

transformed control points is the same as the entire affine 

transformed curve with the same parameters i.e. 
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)(  where R  is a transformation 

matrix and t  is an offset vector [9].  

EBC with affine transformed control points can be written as, 
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by Lemma 2. Therefore EBC is affine invariant. 

Lemma 4: Linear Precision: When all the control points are on a 

straight line, EBC will be a straight line. 

Proof: By Lemma 2, EBC lies within the convex hull of its 

control points. Therefore, when all the control points are on a 

straight line, EBC will be a straight line.  

   All of the proofs for EBC-n can be done in the same way as 

EBC.

Computational complexity analysis: The EBC models have the 

same order of complexity as the original Bezier curve, since in (3), 

for an N degree curve, EBC takes 2N iterations to find the final 

curve point for each value of u , while the original Bezier (1) 

requires N iterations, so the computational order in both cases is 

NO iteration.  

4. EXPERIMENTAL RESULTS

In this section, the performance of the EBC models is firstly 

compared with the original Bezier curve from the perspective of 

curve representation, by using some hypothetical control point sets 

of different degree and orientation, before analyzing the results on 

real-world natural shapes. 

   Figure 3 shows a comparative study among the original Bezier 

curve, EBC and EBC-n for various degrees and orientations. EBC-

n is always the closest to the control polygon, followed by EBC 

and then the Bezier curve. It reflects the fact that both EBC and 

EBC-n integrate local information concerning each control point 

in addition to the inherent global information of the Bezier curve. 
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Figure 3: Curves of different degree and orientation; a) Quadratic; 

b) Cubic; c) Cubic curves in a different orientation. 

   Another experiment was conducted to illustrate the potential of  

EBC and EBC-n using the 

midpoint subdivision

algorithm [13]. The results are 

shown in Figure 4. EBC and 

EBC-n curves were drawn 

using the resultant control 

points generated by [13]. It is 

evident that both EBC models 

generated better curves than  

the original Bezier curve 

using the same subdivided 

control points set. 

   Cubic Bezier curve had been used for shape description [5]. It 

used a priori number of curve segments (segment rate-SR) having 

an equal number of contour points each to describe a particular 

shape. The control points for a segment approximating the 

shape 110 ,,, MvvvV  between iv to miv (where
SR
Mm ) are:-   

miiii vpvpvpvp mm 3210 ;;;
4

3

4

                      (7)   

In the experiments same control points generated by (7) were 

used for the Bezier curve, EBC and EBC-n for two different 

natural images shown in [5]. The minimum gap between a point 

on the contour and the approximated shape represents the shape 

distortion at that contour point.  
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Figure 5: a) Fish image 1; b) Shape described by 5 segments. 

   The popular and widely used shape distortion measurement

algorithms [14] were used for numerical analysis. In Figure 5, 

shape descriptions of an object (fish 1) are shown for a fixed 

number of segments (SR=5). The Bezier curve had a maximum 

distortion of 9.25 pel for the head portion of the object, while EBC 

and EBC-n produced a maximum distortion of 7.8 and 7 pel 

respectively. Considering the entire object, EBC-n provided the 
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best shape description, while Bezier curve was the worst, which is 

confirmed by the numerical results in Table 1, for the maximum 

and overall average (Avg) distortion [14] values, for various 

segment numbers. The results revealed that EBC-n provided better 

performance (lower distortion) even with a smaller number of 

curve segments. For example, the maximum and overall 

distortions for the Bezier curve with 6 segments was 7.8 and 6.7 

units respectively, while for 5 segments, it was 7.8 and 6.6 units 

for EBC and 7 and 5.4 units for EBC-n respectively. This again 

highlights the fact that both EBC and EBC-n considered local 

information in addition to the Bezier global information.
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Figure 6: a) Fish image 2; b) Shape described by 5 segments. 

Another series of experiments was performed on the image in 

Figure 6(a), with the corresponding shape approximations shown 

in Figure 6(b) for 5 segments. The lower half of Table 1 presents 

the results for a range of different segment rates and both the 

visual and empirical results produced by the EBC and EBC-n
models confirm the improved performance in comparison with the 

original Bezier curve. 

Table 1: Distortion (max distortion is in pels; Avg distortion is in 

pel2) in shape representation. 

SR = 5 SR = 6 SR = 7 SR =10 Fish  

max Avg max Avg max Avg max Avg

BC 9.25 9.6 7.8 6.7 6.3 4 3.5 1.3 

EBC 7.8 6.6 6.5 5.7 5.5 3 3.2 0.9 1

EBC-n 7 5.4 6 3.7 5 2.3 2.9 0.7 

BC 7.6 6.4 7.0 5 4.7 3 4.5 1.8 

EBC 7.4 5 6.6 4 4.4 2.3 3.9 1.3 2

EBC-n 7.2 4.2 6.2 3.16 4.2 2.1 3.5 1.2 

   A final experiment was performed to test the performance of 

EBC models for higher degree curves. Different control point sets 

were used for different degree curves; however, for a particular 

degree the same set was used for both EBC models and the 

original Bezier. The curves were closed by joining the first and 

last curve points and the total area covered by the curves used as 

the comparison metric in Table 2. EBC-n covered the maximum 

area for all curve degrees while the Bezier curve covered the least 

area, with the control polygon being the upper bound, so 

confirming that the EBC models more closely follow the control 

polygon than the original Bezier curve. 

Table 2: Area coverage in pel2 for each curve of different degree. 

Degree of the 

curve

Control

polygon 

EBC-n EBC Bezier 

Curve

2 42.5 34 29.8 28 

3 91.5 77.7 72.3 60.7 

4 297.5 209.4 205.3 170.7 

9 593 382 335 255 

19 240 210 193 180 

5. CONCLUSIONS 

While the Bezier curve is a well established tool for a wide range 

of applications, its main drawback is that it does not consider local 

information. This paper has primarily focused upon bridging this 

hiatus by integrating local information into the classical Bezier 

curve framework. Two enhanced Bezier curve (EBC and EBC-n)

models have been presented and mathematically proven that they 

retain the core properties of the original Bezier curve. The 

qualitative and quantitative results using different polygons and 

shapes also showed that both EBC models exhibited significant 

improvement over the classical Bezier curve in terms of shape 

distortion performance, while having the same order of the 

computational complexity.  
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