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ABSTRACT

This paper treats the problem of approximating a complex
stochastic process in a given frequency region by an esti-
mated autoregressive (AR) model. Two frequency domain
approaches are discussed: a weighted frequency domain
maximum likelihood method and a prefiltered covariance
extension method based on the theory of Lindquist and co-
workers. It is shown that these two approaches are very
closely related and can both be formulated as convex opti-
mization problems. An examples illustrating the methods
and the effect of prefiltering/weighting is provided. The re-
sults show that these methods are capable of tuning the AR
model fit to a specified frequency region.

1. INTRODUCTION

Suppose that {y(t), t = . . . − 1, 0, 1, . . .} is a stationary
linear regular random process generated by feeding a se-
quence of independent identically distributed random vari-
ables {e(t), t = . . .−1, 0, 1, . . .} with zero means and with
variances σ2

0 through a shaping, or noise, filter H0(q) :=
1 +

∑∞
k=1 h0

kq−k where q−1 is the delay operator. The
power spectral density equals Φ0(eiω) = σ2

0 |H0(eiω)|2.
For an autoregressive moving average (ARMA) process the
noise filter equals

H0(q) =
C0(q)
A0(q)

=:
1 + c0

1q
−1 + . . . c0

n0
c
q−n0

c

1 + a0
1q

−1 + . . . a0
n0

a
q−n0

a
.

The poles and zeros of H0(q) are restricted to be in the
unit disc. The AR process corresponds to the special case
C0(q) ≡ 1.

Given observations y(1) . . . y(N) the task is to estimate
the power spectral density or the noise filter and innovation
variance. This problem is classical and many methods are
available. The books [1, 2] provide very good introductions
to this field.

Let H(q, θ) be a noise filter model set parameterized
by the d-dimensional vector θ. For an ARMA model θ =

[a1 . . . ana
, c1 . . . cnc

]T . The corresponding prediction error
equals ε(t, θ) = [H(q, θ)]−1

y(t), and the prediction error
identification method (PEM) estimate θ̂PEM is obtained by
minimizing the sum of squared prediction errors under the
constraints that the poles and zeros of H(q, θ) should be
inside the unit circle. For an AR model this simplifies to a
linear least square problem.

If the true process is ARMA and in the model set and
the {e(t)} are Gaussian distributed, the PEM estimate then
coincides with the conditional maximum likelihood (ML)
estimate. Furthermore, in large samples the ML method at-
tains the ultimate statistical performance, i.e., it is consis-
tent and achieves the Cramér-Rao lower bound, and is thus
asymptotically statistically efficient.

However, if the true process is more complex than the
model less is known – in particular when the attention is
given to models which are good in a certain frequency re-
gion. Another open issue is reliable online implementations
of the PEM estimator which needs monitoring to guarantee
feasible estimates and to avoid local minima etc.

The objective of this contribution is to study how to fo-
cus the estimation into a certain frequency range when the
true process is more complex than the model!

2. WEIGHTING IN THE FREQUENCY DOMAIN

Weighting is often more easily done in the frequency than
in the time domain. The ML method can also be formulated
using frequency domain data, see e.g., [2, 3]. Let YN (ω) :=

1√
N

∑N
t=1 y(t)e−iωt be the discrete Fourier transform of

the sequence {y(t), t = 1 . . . N}. By also including the
noise variance σ2 as a parameter, the frequency domain ML
(FDML) cost function equals, see [2, p. 230],

VFDML(θ, σ2) :=
1
2π

∫ π

−π

|YN (ω)|2
σ2|H(eiω, θ)|2 dω

+
1
2π

∫ π

−π

log
(
σ2|H(eiω, θ)|2) dω. (1)
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This is the discrete time version of the classical Whittle like-
lihood, and can interpreted as the likelihood of the asymp-
totic distribution of the periodogram, see e.g., [4, p. 347].
Here we have used an integral formulation, instead of the
more common summation over the frequencies ωk = 2πk/N ,
k = 1 . . . N . The difference is negligible for large N . In [5]
this frequency domain approach is further refined by also
taking the initial state of the noise filter into account to ob-
tain a leakage free spectral representation.

To obtain a frequency weighted estimate, FDML(f), we
can assign a non-negative weight, W (ω) ≥ 0, to each fre-
quency in (1):

VFDML(f)(θ, σ2) :=
1
2π

∫ π

−π

W (ω)
|YN (ω)|2

σ2|H(eiω, θ)|2 dω

+
1
2π

∫ π

−π

W (ω) log
(
σ2|H(eiω, θ)|2) dω. (2)

One possible frequency weighting is to give a constant weight
to all frequencies in a desired region and zero weight to all
others. In the discrete case the cost function then is of the
form

ṼFDML(f)(θ, σ2) =
1
M

∑
ωk∈Ω

|YN (ωk)|2
σ2|H(eiωk , θ)|2

+
1
M

∑
ωk∈Ω

log
(
σ2|H(eiωk , θ)|2) , (3)

where Ω is a specified set of M important frequencies.
It is possible to perform analytic minimization of the

cost-functions with respect to σ2 as shown in [2, p. 230].
For VFDML(f)(θ, σ2) this leads to the estimates

θ̂FDML(f) :=

arg min
θ

[
W̄ log

(
1
2π

∫ π

−π

W (ω)
|YN (ω)|2

|H(eiω, θ)|2 dω

)

+
1
2π

∫ π

−π

W (ω) log |H(eiω, θ)|2dω

]
, (4)

where W̄ := 1
2π

∫ π

−π
W (ω)dω. For any monic, stable and

inversely stable transfer function H(eiω, θ) we have

1
2π

∫ π

−π

log |H(eiω, θ)|2dω = 0, (5)

and hence the second term in (4) disappears if W (ω) = 1
(no weighting). This term is, however, most important for
the weighted case to regularize the optimization problem,
and can be viewed as a kind of barrier function in con-
strained optimization.

3. WEIGHTED COVARIANCE EXTENSION

Next we discuss a weighted covariance extension approach.
Let r(τ) be the covariances of y(t). The rational covari-
ance extension problem amounts to, for a given covariance

function, to find a noise filter with a matching covariance
function up to a given lag, i.e., solve

r(τ) − 1
2π

∫ π

−π

eiωτΦ(eiω)dω = 0, τ = 0 . . . n

Φ(z) = σ2 C(z)C(z−1)
A(z)A(z−1)

,

with respect to [a1 . . . an]T and σ2. Since only n + 1 co-
variances are exactly matched, the C(z)-polynomial can be
taken as a free design variable (with roots inside the unit
disc). This gives different feasible covariance extensions
r(τ), τ > n of the covariance sequence, hence the name.
For example C ≡ 1, i.e., an AR model, gives the maximum
entropy extension. See [6] for the state-of-art of the rational
covariance extension problem.

The trick to solve this problem is to use the coefficients
of Q(z) = A(z)A(z−1)/σ2 =

∑n
k=0 qk(zk + z−k)/2 as

parameters, and then solve

r(τ) − 1
2π

∫ π

−π

eiωτ |C(eiω)|2
Q(eiω)

dω = 0, τ = 0 . . . n. (6)

The set of feasible θ̄ := [q0 . . . qn]T ,

Q+ :=
{
θ̄ ∈ R

n+1 : Q(eiω) > 0, ω ∈ [−π, π]
}

,

is easily seen to be a convex set. The left hand side of the
equations (6) are just the derivatives with respect to qτ , τ =
1 . . . n of the functional

VCE(θ̄) := [r(0) . . . r(n)]θ̄ − 1
2π

∫ π

−π

|C(eiω)|2 log Q(eiω)dω.

The first term of VCE(θ̄) equals the normalized variance
of the prediction errors for an AR model. For the spe-
cial case C(z) ≡ 1, the second term of VCE(θ̄) equals
log σ2. Hence we have then derived the asymptotic pre-
diction error cost functional for an AR model, which af-
ter analytic optimization with respect to σ2 simplifies to a
quadratic least squares optimization problem (solving the
normal equations). The second term is however most im-
portant for an ARMA model, C(z) �= 1, and makes the
optimization problem non-quadratic. In [6] it is, however,
shown that VCE(θ̄) is a convex functional and that the prob-
lem has a unique interior minimizer, and hence the ARMA
covariance extension problem can be solved using convex
optimization methods.

Next we generalize this approach to the weighted/prefil-
tered case. Let yf (t) := Lf (q)y(t), rf (τ) be the filtered
covariances, and

r̂f (τ) :=
1
N

N∑
t=τ+1

yf (t)yf (t − τ).
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The key idea is to apply the rational covariance extension
method to the prefiltered covariances. This leads to the fol-
lowing matching problem, for τ = 0, . . . n:

rf (τ) − 1
2π

∫ π

−π

eiωτ |Lf (eiω)|2 |C(eiω)|2
Q(eiω)

dω = 0,

which integrates to the cost function

VCE(f)(θ̄) := [rf (0) . . . rf (n)]θ̄

− 1
2π

∫ π

−π

|C(eiω)|2|Lf (eiω)|2 log Q(eiω)dω. (7)

This is also a convex function of θ̄ as can be shown using the
arguments in [7]. The optimization problem then becomes

min
θ̄∈Q+

VCE(f)(θ̄). (8)

In [7] it is shown to have a unique interior minimizer.

4. ON THE RELATION BETWEEN THE
WEIGHTING IN THE FREQUENCY DOMAIN AND

COVARIANCE EXTENSION

Here we will study the connection between the FDML(f)
functional and the CE(f) functional. Under a particular choice
of weighting function and prefilter, they will in fact be the
same.

The cost function VCE(f)(θ̄) in (7) with

C = 1, H(q, θ) = 1/A(q), 1/Q(q) = σ2H(q, θ)H(1/q, θ)

can be expressed as

V̂CE(f)(θ̄)

= [r̂f (0) . . . r̂f (n)]θ̄ − 1
2π

∫ π

−π

|Lf (eiω)|2 log Q(eiω)dω

=
n∑

k=0

qk
1
2π

∫ π

−π

ekiω + e−kiω

2

[
r̂f (0)

+
n∑

l=1

r̂f (l)(eliω + e−liω) + S(eiω)
]
dω

+
1
2π

∫ π

−π

|Lf (eiω)|2 log
(
σ2|H(eiω, θ)|2) dω,

=
1
2π

∫ π

−π

|Lf (eiω)|2 Φ̂(eiω)
σ2|H(eiω, θ)|2 dω

+
1
2π

∫ π

−π

|Lf (eiω)|2 log
(
σ2|H(eiω, θ)|2) dω,

(9)
with

Φ̂(ω) :=
1

|Lf (eiω)|2
(
r̂f (0) + r̂f (1)(eiω + e−iω)+

· · · + r̂f (n)(eniω + e−niω) + S(eiω)
)
,

where S(z) is any function of zk for all k > n and k < −n.
Theorems 2.1 and 2.2 in [2] imply that Φ̂(ω) = |YN (ω)|2 +
O(1/

√
N) if we choose S(z) =

∑N
k=n+1 r̂f (k)(zk +z−k).

The functional (9) is then equal to the FDML(f) functional
in (2) if we take Φ̂(ω) = |YN (ω)|2 and W (ω) = |Lf (eiω)|2.
An ideal filter

|Lf (eiω)| =
{

1, ωk ≤ ω ≤ ωl, ωk, ωl ∈ Ω
0, otherwise

would give that (9) is close to (3). However, this choice is
not feasible since we assume that 0 < |Lf (eiω)| < ∞ for
the covariance extension problem.

Inspired by this we can re-parameterize the FDML func-
tional ṼFDML(θ, σ2) in terms of the qk parameters. This
also yields a convex problem. However, in contrast to the
integral formulation of the covariance extension approach
there is no guarantee that there exists an interior optimizer.
This never happens in the integral formulation as shown in
[6, 7]. However, for reasonable data this should not be a
major problem in the finite approximation.

5. A SIMULATION EXAMPLE

Next we shall consider an example illustrating the proposed
procedure while comparing it to the FDML(f) and PEM es-
timators.

white

white

noise

noise

yAR(t)

em(t)

y(t)

1
A(q)

Hm(q)

Lf (q)
yf (t)

Fig. 1. The system setup

Example 1 (AR(2) in colored noise) This example amounts
to identifying an AR(2) process in colored noise. The sig-
nal y(t) is generated as in Figure 1. Let the roots of A(q) be
in 0.98e±0.2πi and let the driving noise be Gaussian white
with unit variance. Let the added noise be color by driv-
ing Gaussian white with unit variance through a sixth order
shaping filter Hm(z). This noise has most of its power in
the higher frequency region. The signal-to-noise ratio of the
signal y(t) will then be high around the peak located at the
frequency 0.2π while it will be very small at high frequen-
cies. Assuming that we possess this a priori knowledge of
the process, we, for instance, use the low-pass prefilter

Lf (z) =
(z − 0.6e2i)3(z − 0.6e−2i)3

(z − 0.6e0.8i)3(z − 0.6e−0.8i)3
, (10)
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Fig. 2. The spectrum of the AR(2) process and the noise
together with the spectral density of the prefilter.

in the method. The spectral representation of yAR(t), em(t),
and the prefilter are plotted in Figure 2.

Now we apply the proposed CE(f) method. We compare
our estimator to the PEM estimator of [2] and the FDML(f)
estimator. In the latter we take

Ω =
{

ωk =
2πk

M
: ωk ∈ [0.1π, 0.3π]

}
.

In a sense this correspond to an ideal band-pass filter and
thus differs significantly from Lf (z) in (10). To avoid tran-
sient error we use the large sample size N = 5000.

In Figure 3 the frequency responses for ten different re-
alizations of the noises {e(t)} and {em(t)} are given. We
clearly see that the FDML(f) and CE(f) estimators are bet-
ter for the lower frequencies than the PEM estimator. How-
ever, this is of course at the expense of a worse match for
higher frequencies. That the FDML(f) and CE(f) estimators
give approximately the same result despite the fact that the
FDML(f) uses an ideal band-pass filter whereas CE(f) uses
Hm indicates a low sensitivity with respect to the choice of
prefilter/weight.

6. CONCLUSIONS

Models are always approximations of true data generating
processes. The quality of a model depends heavily on its
intended use. If the objective is prediction, the prediction
error approach is optimal. If the interest is in spectral prop-
erties in certain frequency band the answer is more compli-
cated. In this paper we have proposed a prefiltered covari-
ance extension approach to introduce frequency weighting
in AR estimation and shown that it is closely related to fre-
quency weighted maximum likelihood estimation. An ex-
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Fig. 3. Spectral densities for ten estimations of Example 1.

ample indicates that this is a promising way to affect the
model error distribution. This paper is an abbreviated ver-
sion of [8].

7. REFERENCES

[1] P. Stoica and R. Moses, Introduction to Spectral Anal-
ysis, Prentice Hall, 1997.

[2] L. Ljung, System Identification, Theory for the User,
Prentice Hall, 1999.

[3] R. Pintelon and J. Schoukens, System Identification, A
Frequency Domain Approach, IEEE Press, 2001.

[4] P.J Brockwell and R.J. Davis, Time Series: Theory and
Methods, Springer, New York, 1991.

[5] R. Pintelon and J. Schoukens, “Time series analysis in
the frequency domain,” IEEE Trans. Signal Processing,
vol. 47, no. 1, pp. 206–210, 1999.

[6] C. I. Byrnes, S. V. Gusev, and A. Lindquist, “From
finite covariance windows to modeling filters: A convex
optimization approach,” SIAM Review, vol. 43, no. 4,
pp. 645–675, 2001.

[7] T. T. Georgiou and A. Lindquist, “Kullback-Leibler ap-
proximation of spectral density functions,” IEEE Trans.
Information Theory, vol. 49, no. 11, pp. 2910–2917,
November 2003.

[8] A. Blomqvist and B. Wahlberg, “On affecting the
frequency domain error distribution in autoregressive
spectral estimation using prefiltering,” Submitted for
publication, 2004.

IV - 248

➡ ➠


