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ABSTRACT
Time encoding is a real-time asynchronous mechanism of mapping
amplitude information into a time sequence. We investigate fast
algorithms for the recovery of time encoded bandlimited signals
and construct an algorithm that has provably low computational
complexity. We also devise a fast algorithm that is parameter-
insensitive.

1. INTRODUCTION

Time encoding is a real-time asynchronous mechanism of mapping
amplitude information into a time sequence. In [4] time encoding
and irregular sampling were shown to be largely equivalent modal-
ities of information representation and recovery. For communica-
tions applications, however, irregular sampling requires the trans-
mission of both amplitude and sampling time information. Time
encoding requires only the transmission of the time sequence. Thus,
capacity requirements for time encoded versus irregular sampled
bandlimited signals are lower by a factor of two [5].

For the case of irregular sampling, fast algorithms for signal
recovery have been extensively studied in the literature (e.g., [2],
[3], [6]). While these algorithms are an excellent starting point to
search for fast algorithms for recovery of time encoded bandlim-
ited signals, they can not be directly applied to the time encod-
ing case. The reasons are purely technical: the method developed
for the irregular sampling case calls for reducing the solution of
a linear systems of equations to a Toeplitz matrix inversion. Our
method for obtaining a fast algorithm for the time encoding case
is based on showing that the indefinite integral of the same signal
can be directly recovered from its amplitude values sampled at in-
stances provided by the time sequence. In the process we find that
the complexity of recovering the indefinite integral of an arbitrary
bandlimited signal from irregular samples is essentially the same
as the complexity of recovering the same signal from its time en-
coded sequence. In addition, we find that the condition numbers
of the pseudo-inverse matrices that arise in both formulations can
be chosen to essentially be in the same range.

This paper is organized as follows. A brief overview of the
classical recovery algorithm for irregular sampling followed by a
review of an efficient recovery for irregular sampling is presented
in section 2. In section 3 we derive a fast recovery algorithm
for time encoded bandlimited signals. In section 4, a parameter-
insensitive reconstruction algorithm is devised. Simulation results
are presented in section 5.

2. FAST RECOVERY ALGORITHM FOR IRREGULAR
SAMPLING

2.1. The Classical Recovery Algorithm for Irregular Sampling

Given a set of irregular sampling times (tk), k ∈ Z, we shall
represent the Ω-bandlimited signal x = x(t), t ∈ R, as

x(t) = g
T
c =

X
k∈Z

ckg(t − tk), (1)

where c = [ck] is a vector of weights, T denotes the transpose and
g = [g(t − tk)] with

g(t) =
sin Ωt

πt
(2)

is the vector of tk-shifted impulse response of an ideal lowpass
filter with bandwidth Ω. Also, R and Z above denote the set of
real numbers and integers, respectively. Denoting by:

[q]l = x(tl) and [G]l,k = g(tl − tk), (3)

for all k, k ∈ Z, and l, l ∈ Z, it is easy to see that

q = Gc. (4)

If the average density of the sk’s is at or above the Nyquist rate
then, c can be evaluated as

c = G
+
q, (5)

where G+ is the pseudo-inverse (Moore-Penrose) of G. The prac-
tical solution, however, is challenging because G is typically ill-
conditioned, and, q, c and G are infinite dimensional.

2.2. A Fast Recovery Algorithm for Irregular Sampling

For irregular sampling, let us consider with T = π/Ω and α−1 =
(2M + 1)T

g(t) = α

MX
n=−M

ejn Ω
M

t = α
sin

`
2M+1
2M

Ωt
´

sin
`

Ωt

2M

´ (6)

instead of the impulse response defined in (2). When M tends to
infinity this function converges to the original impulse response.
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At the same time, the latter choice of g(t) is both Ω-bandlimited
and periodic with a period 2MT .

In analogy to (1), we define the function f = f(t), t ∈ R, by

f(t) = α
X
k∈Z

ck

MX
n=−M

ejn Ω
M

(t−tk). (7)

Assuming an appropriate norm, f is an approximation of x as
M → ∞ provided that f(tl) = x(tl) for all l, l ∈ Z [3]. Evaluat-
ing the above equality at t = tl we obtain

f(tl) = α
X
k∈Z

ck

MX
n=−M

ejn Ω
M

(tl−tk), (8)

for all l, l ∈ Z. By denoting [q]l = x(tl) and [S]m,l = e−jm Ω
M

tl ,
equation (8) above after multiplication with S becomes

Sq = αSS
H
Sc, (9)

or
d = αT+Sq, (10)

where
d = αSc and T = αSS

H . (11)

For the record

[d]n = α
X
k∈Z

cke−jn Ω
M

tk and [T]m,n = α
X
l∈Z

ej(n−m) Ω
M

tl .

(12)
Note that T is both Toeplitz and Hermitian since [T]m,n = [T]m−n

and TH = T (the superscript H indicates conjugate transposi-
tion). Finally with [d]n = dn,

f(t) =

MX
n=−M

dnejn Ω
M

t, (13)

In summary, the bandlimited signal x can be approximately
represented by equation (13) with the weighting coefficients eval-
uated following (10). The low complexity of the algorithm (10) is
due to the fact that T is a Hermitian Toeplitz matrix.

3. FAST RECOVERY ALGORITHM FOR TIME
ENCODING

3.1. Classical Recovery Algorithm for Time Encoding

In the time encoding case an Ω-bandlimited signal x = x(t),
t ∈ R, is represented as a discrete strictly increasing time sequence
(tk), k ∈ Z. The time sequence (tk), k ∈ Z, is generated using
a Time Encoding Machine (TEM) [4]. An example of a TEM is
depicted in Figure 1 [4]. It consists of an ideal integrator and a
noninverting Schmitt trigger in a feedback arrangement. The out-
put z(t) takes the values b or −b at transition times denoted by tk.
It can be shown [4] that this circuit is described by for all l, l ∈ Z,
by the recursive equationZ tl+1

tl

x(u)du = (−1)k [2κδ − b(tk+1 − tk] . (14)

The recovery of the signal x is achieved via the representation

x(t) = g
T
c =

X
k∈Z

ckg(t − sk) (15)

1

κ

Z
dt

−

+

y(t)
δ−δ y

b

−b

z

Integrator

x(t) z(t)

Noninverting Schmitt trigger

Fig. 1. An Example of a Time Encoding Machine

with an appropriate set of weights ck, k ∈ Z. Denoting by:

[q]l =

Z tl+1

tl

x(u)du and [G]l,k =

Z tl+1

tl

g(u − sk)du, (16)

where sk = (tk+1 + tk)/2, it is easy to see that

q = Gc and c = G
+
q. (17)

3.2. Reformulation of the Classical Recovery Algorithm

If x is a bandlimited function, then so is
R t

−∞
x(u)du, t ∈ R, and

therefore: Z t

−∞

x(u)du = g
T
c =

X
k∈Z

ckg(t − tk), (18)

where g = [g(t − tk)], g(t) is given by (2) and c = [ck] is an
appropriate set of coefficients. SinceZ tl+1

tl

x(u)du =
X
k∈Z

ck[g(tl+1 − tk) − g(tl − tk)], (19)

we have
q = PGc, (20)

where [P]l,k = δl+1,k − δl,k (using Kronecker’s notation) and
[G]l,k = [g(tl − tk)] (same as in (3)) and thus

c = G
+
P

−1
q (21)

with

[P−1]i,k =

j
−1 if i ≤ k

0 if i > k.
(22)

Remark 1 Note that by multiplying both sides of equation (20)
with tl+1 − tl, we obtain:

(tl+1 − tl)[P
−1

q]l =
X
k∈Z

(tl+1 − tl)
sin Ω(tl − tk)

π(tl − tk)| {z }
[ · ]l,k

ck. (23)

In the time encoding case, [q]l =

=
X
k∈Z

Z tl+1

tl

sin Ω(u − sk)

π(u − sk)
du ck =

X
k∈Z

(tl+1−tl)
sin Ω(ξl − sk)

π(ξl − sk)
ck

for some ξl ∈ [ttl
, tl+1]. Therefore, the elements of the matrix

identified by the lower brace in equation (23) are approximately
equal to the elements of the G matrix for time encoding. This
points to the close relationship between the recovery algorithm of
a time encoded bandlimited signal x and the recovery of an irreg-
ularly sampled integrated signal

R t

−∞
x(u)du. For both recovery

methods the same time sequence is used.
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3.3. Fast Recovery Algorithm

Now, (23) can be transformed into a Toeplitz system in the same
way as carried out in Sec. 2.2. Replacing the sinc term by the
approximation introduced in (6) gives:

(tl+1 − tl)[P
−1

q]l = α(tl+1 − tl)
X
k∈Z

ck

MX
n=−M

ejn Ω
M

(tl−tk)

Denoting by D = diag (tl+1 − tl), l ∈ Z, we have in matrix form

DP
−1

q = αDS
H
Sc.

Multiplying both sides by S from the left gives:

SDP
−1

q = αSDS
H
Sc

Equivalently with

T = αSDS
H , d = αSc, (24)

we have
d = αT

+
SDP

−1
q. (25)

The matrix T is both Toeplitz and Hermitian since

[T]n,m = α
X
k∈Z

(tk+1 − tk)ej(m−n) Ω
M

tk .

Finally, the original signal x is approximated the function f given
by

f(t) =
jΩ

M

MX
n=−M

ndnejn Ω
M

t, (26)

with the vector d given by (25).

4. PARAMETER-INSENSITIVE RECONSTRUCTION

The original reconstruction of a time encoded bandlimited func-
tion depends on the TEM parameters κ and δ. In [4] the Compen-
sation Principle was used to address the insensitivity of the recov-
ery algorithm with respect to the parameters of the TEM. A simple
argument shows, however, that the method employed in [4] does
not directly apply here. Therefore, a different technique is needed.

Parameter insensitivity can be achieved if the term P−1q in
equation (24) does not depend on κ and δ. Carrying out P−1q by
using (22) gives:

[P−1
q]l = −κδ

h
1 + (−1)i

i
+ b

LX
k=i

(−1)k (tk+1 − tk)

where L denotes the size of G (ideally L → ∞). Therefore, as
seen, P−1q will be independent of κδ for odd values of i. If -1
in the last column of every second line of P−1 is changed to zero
then each integral is carried out over even number of subintervals.
This can be achieved by adding the vector

2
666664

0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 1

3
777775 q =

2
666664

0
1
0
1
0
1

3
777775

| {z }
a

ˆ
0 0 0 0 0 1

˜
| {z }

bT

q

to P−1q and defining

p = P
−1

q + ab
T
q, (27)

where for illustration purposes and in finite dimensions

p =

2
666664

−1 −1 −1 −1 −1 −1
0 −1 −1 −1 −1 0
0 0 −1 −1 −1 −1
0 0 0 −1 −1 0
0 0 0 0 −1 −1
0 0 0 0 0 0

3
777775

2
666664

q1

q2

q3

q4

q5

q6

3
777775 .

Note that p can be calculated without using parameters δ and κ.
Since

p = P
−1

q + ab
T
PP

−1
q

and P−1q = αSHSc, we have:

p = αS
H
Sc + αab

T
PS

H
Sc.

Multiplying both sides above by SD gives:

SDp = αSDS
H
Sc + αSDab

T
PS

H
Sc.

Using the matrix T and vector d defined in (24) and (25), respec-
tively, and denoting by

u = αSDa, v
T = b

T
PS

H , (28)

we have:
(T + uv

T )d = SDp,

and therefore
d = (T + uvT )+SDp. (29)

Finally, employing the result of [1] (page 50, Corollary 3.3.1), the
pseudo-inversion in (29) can be determined based on the pseudo-
inverse of T as

(T + uv
T )+ = T

+ −
T+uvT T+

1 + vT T+u

provided that 1+vT T+u �= 0. Thus, to solve (29) we again have
to calculate the pseudo- inverse of a Hermitian Toeplitz matrix and
the parameter-insensitivity is also guaranteed. The reconstructed
signal is again given by (26).

5. SIMULATION RESULTS

With Ω = π × 80 kHz and the corresponding Nyquist period
T = π/Ω = 12.5 µs the bandlimited signal x(t) was generated
by its Shannon-representation x(t) =

P65
n=−35 x(nT )sinc(Ω(t−

nT )), where the samples x(−35T ), . . . , x(65T ) were randomly
selected in the range (−0.3, 0.3) and sinc(t) = sin t/t if t �=
0 and sinc(0) = 1. This is shown in Fig. 2 in the range t ∈
[−50T, 80T ]. The dashed box in the figure shows the simula-
tion range t ∈ [0 µs, 250.38 µs] for the TEM. With parameters
δ = 7 × 10−6, κ = 1/2, and c = 0.3 the TEM simulation
produced 35 trigger times t0 = 0, t1, . . . , t35. Fig. 3 shows the
error signal defined as the difference between the right-hand-side
and the left-hand-side of (26) in an even further reduced range
t ∈ [25.125 µs, 225.38 µs] to decrease the boundary effects [4].

Finally, Fig. 4 shows the results for the RMS error and the
condition number of T (based on using ‖ · ‖2) in terms of different
values of M by using the new reconstruction technique. It can be

IV - 239

➡ ➡



-0.5 -0.25 0 0.25 0.5 0.75 1

-0.2

-0.1

0

0.1

0.2

0.3

0.4

t (ms)

x(t)

Fig. 2. Overall input signal x(t) and the simulation range (dashed
box) for time encoding.
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Fig. 3. Error signal using the original formulation in the reduced
range to reduce the boundary effects.
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-100

0

100
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cond(G)
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dB
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eRMS(M)

cond(T)

Fig. 4. Simulation results for the condition numbers and RMS
error.

seen that as the condition number increases the accuracy of the
reconstruction improves.

Fig. 5 shows the simulation results with the original (squares)
and the parameter-insensitive reconstruction technique (stars). The
error with the original method is the same as that shown in Fig. 4.
Using the same parameters as before we found that increasing M
the accuracy improves. The nonzero eigenvalues of T are ap-

10 12 14 16 18 20

-140

-120

-100

-80

-60

-40

-20

M

eRMS (dB)

Fig. 5. Simulation results for the RMS error.

proaching to those of G in (23) and practically zero eigenvalues
are introduced if M is increased. In particular, having 27 trig-
ger times the error for M = 11 (2M + 1 = 23), M = 13
(2M + 1 = 27), M = 15 (2M + 1 = 31), the corresponding
error turned out to be -111.86 dB, -139.96 dB, -146.28. The ac-
curacy cannot be improved below -154.3 dB corresponding to the
case when the original g(t) is used.

6. CONCLUSIONS

We have shown that the indefinite integral of an arbitrary bandlim-
ited signal can be directly recovered from the time encoded se-
quence associated with the same bandlimited signal. This simple
observation enabled us to devise a fast algorithm for signal recov-
ery. We have also demonstrated that our approach can be extended
to parameter insensitive signal recovery. Taken together, these re-
sults shed further light on the close relationship between irregular
sampling and time encoding.
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