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ABSTRACT 

Known forms of Wiener filter do not adequately address 

the discrete-time signal processing of continuous random 

processes. In this paper, we first formulate this problem 

and subsequently derive its solution. The crux of the work 

is the development of autocorrelation function invariant 

discrete equivalent of a continuous system. This in turn 

enables us to transform the hybrid Wiener filtering 

problem into a purely discrete one. An example 

demonstrates the concepts presented, and draws a 

comparison of ACF-invariance with other discretization 

schemes. 

1. INTRODUCTION

Linear optimal filtering introduced by Wiener [8] is one of 

the most significant breakthroughs in the field of 

statistical signal processing. The work became the 

precursor to the later developments and advancements in 

the related areas [4]. Known forms of Wiener filter are 

either restricted to pure continuous-time (CT) domain or 

pure discrete time (DT) domain ([2], [5]). However, in 

many physical situations CT random signals are sampled 

and subsequently processed in DT [2]. In this paper we 

formulate the problem so as to preserve the optimal 

(Wiener) solution in this scenario. Accordingly, the result 

is called the hybrid Wiener filter.  

The conventional approach to discretizing the 

Weiner design is to mimic the CT solution with sampled 

random processes.  Known sampling schemes however, 

do not preserve the response of CT systems to random 

signals, which forms the basis of Wiener solution. In view 

of this, we develop an autocorrelation function (ACF) 

invariant DT equivalent of CT systems.  This development 

subsequently admits the optimal causal IIR Wiener 

solution by spectral factorization. 

An example illustrates the concepts.  A comparison 

with mean square errors resulting from other commonly 

used discretization schemes highlights the significance of 

ACF-invariance.  

2.  THE HYBRID SCENARIO 

Let ( )cu t  be a continuous random process. The process 

generator of ( )cu t  is assumed to be a linear time-invariant 

(LTI) causal stable filter ( )H s  that is excited by zero-

mean white noise ( )v t  with variance 2
v . The 

autocorrelation function ( )
cur t  of ( )cu t  is given by 

2 1( ) ( ) (1/ )
cu vr t H z H z  (1) 

where 1  is the inverse Z-transform operator. The 

signal ( )cu t  is fed to an ideal sampler to obtain a discrete 

signal [ ] ( )c su n u nT , where sT  is the sampling time. The 

process u[n] is corrupted by added observation noise, 

w[n], which is uncorrelated with u[n], and sequence s[n] is

measured:
[ ] [ ] [ ]s n u n w n  (2) 

Under the customary assumption that the observation 

noise is zero-mean, uncorrelated,   [ ]w n  must be 

prescribed directly in DT because of the mathematical 

intractability of discretizing a CT white processes.  

Let ( )cd t indicate the desired signal (i.e. the signal to 

be estimated) ([3], [5],   The process generator of ( )cd t  is 

again an LTI causal stable system ( )G s , which is driven 

by zero mean white noise 1( )v t . We assume that ( )cd t

also undergoes ideal analog to digital conversion resulting 

in [ ] ( )c sd n d nT . We pass the signal [ ]s n  through a 

filter ( )optH z , whose output is denoted by [ ]y n . The 

error sequence [ ]e n  is

[ ] [ ] [ ]e n d n y n  (3) 

The hybrid Wiener filter ( )optH z is designed to 

minimize the mean squared error 2[ ]E e n , in which  

[ ]E  is the expectation operator  Note that the output of  

( )optH z  is interpretable as an estimate of the desired 
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signal and hence can be written as ˆ[ ] [ ]y n d n . The 

overall concept is illustrated in Figure 1.  
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Figure 1. The hybrid Wiener filter problem 

3. PROBLEM FORMULATION 

The objective is to transform the hybrid filtering problem 

above into a purely DT one. In the case of a finite impulse 

response (FIR) Wiener filter, we get the normal equations 

by direct discretization of the ACF ( )
cur t , yielding 

[ ] ( )
cu u sr k r nT . A discussion of discretizing ACF 

follows in Section 4. We will not pursue the FIR Wiener 

filter because of its simple nature. The infinite impulse 

response (IIR) Wiener solution, however, requires 

knowledge of transfer function of the process generator 

(noise or signal?).  This in turn necessitates the 

discretization of ( )H s  which is the processor synthesizer 

of ( )cu t  in Figure 1. There are different methods for 

deriving finding DT equivalents of CT systems. Because 

of inherent loss of information in the discretization 

process, none of these schemes is universal. These 

methods are devised such that some frequency or time 

domain characteristic of the original continuous system is 

preserved in the DT domain. The commonly used methods 

are based on numerical integration, pole-zero mapping 

and/or hold equivalence. Examples are forward-backward 

difference, bilinear transformation, zero-order hold, first-

order hold [2]. However, none of these methods takes into 

account the second-order statistical properties of the input 

and output signals. Accordingly,  these DT equivalents are 

not suitable for the Wiener filtering problem, which is 

essentially a second-order optimal solution ([1], [8]).We 

propose a new scheme to find a discrete equivalent that 

preserves second-order statistical properties of a system. 

This concept is illustrated in Figure 2. 

[ ]v n ˆ[ ]u n( )acfH z

Figure 2. ACF-invariant discrete process generator  

In the figure [ ]v n  is a discrete white sequence with 

variance 2
v  and ˆ[ ]u n  is the output of the system 

( )acfH z .  Our goal is to find ( )acfH z  such that the ACF 

ˆ[ ]ur k  of the sequence ˆ[ ]u n  has the property 

ˆ [ ] ( )
cu u sr k r nT . Accordingly we term ( )acfH z  as the 

ACF-invariant equivalent of ( )H s . The power spectral 

density of [ ]u n   ( 2 1( ) ( )v acf acfH z H z ) and hence, that 

of  [ ]s n , are now available. Consequently we can now 

find the noncausal Wiener solution or employ spectral 

factorization to arrive at the causal Wiener solution [5].  

4. ACF-INVARIANT DISCRETE EQUIVALENT 

Useful system functions in engineering tasks ordinarily 

proper rational. When the relative degree of ( )H s  is zero, 

( )cu t  in Figure 1 carries a component of white noise, 

which makes  proper conversion to DT impossible.    We 

therefore assume that H(s) is strictly proper. We also 

assume that H(s) represents a real, causal, stable system. 

Let us begin with a second-order system with the 

following system function:   

1

1 2

( )
k s z

H s
s s s s

 (4) 

The analysis also applies to a two-pole system [without 

the zero as in (4)], 

1 2

( )
k

H s
s s s s

 (5) 

For notational simplicity we drop the subscript on 

( )
cur t  and write ( )r t .  The conventional bracket notation 

is used to distinguish between CT, ( )r t   and DT, [ ]r n .

Using (1), it is found that ACF ( )r t  for both systems (4) 

and (5) has the form 

1 2( )
s t s t

r t e e  (6) 

With sT  as the sampling time period, we discretize ( )r t

and obtain [ ]r n  as follows 

1 2

1 2

[0]

[ 1]

[ ]

s s

s s

s T s T

ks T ks T

r

r e e

r k e e

 (7) 

It is easy to show that a general second order 

autoregressive AR(2) process is not consistent with (7), so 

that a DT “equivalent” of (5) would not produce an ACF-

equivalent signal in DT. In an attempt to model (4), let us 

consider the autoregressive—moving-average 

ARMA(2,1) process, governed by the equation 

1 2 1[ ] [ 1] [ 2] [ ] [ 1]u n a u n a u n v n b v n  (8) 
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The transfer function of the process is 
1

0 1

1 1
1 2

( )
1

ARMA

b b z
H z

a z a z
 (9) 

In this case we have the following set of equations 
2

1 2 0 1

2
1 2 1

1 2

[0] [ 1] [ 2] (0) (1)

[1] [0] [ 1] (0)

[ ] [ 1] [ 2] 0, 1

v

v

r a r a r b h h b

r a r a r h b

r m a r m a r m m

(10) 

where [ ]h n  is the impulse response of ARMA(2,1) 

process. We have 

0

1 1 0

[0]

[1]

h b

h b a b
 (11) 

From (7) and last equation of (10), equating coefficients 

gives the solution 

1 2

1 2

1

2

s s

s

s T s T

s s T

a e e

a e

 (12) 

An important observation is that a pole at s p  is 

mapped to a pole at 

spT
z e  (13) 

The same is observed for sampling schemes like hold 

equivalents and impulse invariance [2]. We are now in a 

position to solve the first two non-linear equations of (10). 

Dividing the two and rearranging yields 
2

1 1
1( ) 1 0

o o

b b
a

b b
 (14) 

where 

1 2 1 2

1 2 2 1

[0] [ 1] [ 2] [0] [1] [2]

[1] [0] [ 1] (1 ) [1] [0]

r a r a r r a r a r

r a r a r a r a r
 (15) 

Solving (14) for 1 / ob b , we get two solutions. It can be 

shown that one is minimum phase and the other one is not. 

Finally 0b  and hence 1b  can be evaluated by equating DC 

gain of continuous system ( )H s  and ( )ARMAH z  in (9). To 

ascertain the consistency of ARMA(2,1) with the data in 

(7), we have used the approach of matching coefficients. 

This method proves that the ARMA(2,1) process is 

consistent with (7) for all lags k.   The solution of the  

normal equations ([3], [5]) for the ARMA process 

( 2,3m  in (10)),  would have produced  the same result 

but without a confirmation for 3m . After calculation of 

ARMA(2,1) parameters according to ACF-matching 

criterion, we use the notation ( )acfH z  for the resultant 

system function. Continuing the same approach, it can be 

shown that for complex conjugate poles with the system 

transfer functions 

1

2 2

2 2

( )

or

( )

k s z
H s

s

k
H s

s

 (16) 

ARMA(2,1) process is sufficient to accurately meet the 

ACF matching condition. In this case the poles are 

mapped to 
jz e  (17) 

where sT
e and sT . Alternately 

1

2 2
2

2 cos

2 coss

s

j j

T
s

T

a e e

e T

a e

 (18) 

The procedure for calculating 0b  and 1b  in (9) remains 

the same as in the case of real poles. 

Generalizing the result of this discussion to a p-pole 

and q-zero (with q p ) continuous system ( )H s , which 

is the process synthesizer for ( )cu t  in Figure 1, it can be 

shown that [ ]u n  is an ARMA( , 1)p p  process. In this 

case the autocorrelation sequence satisfies following set of 

equations [5] 
1

2

1 0

1

[ ] [ ] [ ] , 0 1

[ ] [ ] 0,

p p m

l v l m

l l

p

l

l

r m a r m l h l b m p

r m a r m l m p

 (19) 

The second set of equations for m p  gives us results 

that maps a real pole at s  to a real pole at sT
z e

and a complex conjugate pole-pair at s j  to a 

complex conjugate pole-pair at s sT j T
z e e . The 

coefficients 'lb s  must be calculated by solving the first p

non-linear equations of (19) and equating the DC gains. 

The minimum phase solution is preferable so that 
1 ( )acfH z  is causal and stable.

4.1. Noise Whitening Property 

If 1 ( )acfH z  is causal and stable, then it acts like a noise-

whitening filter in the DT domain. The concept is 

illustrated in Figure 3. Here [ ]x n  is a DT white sequence 

with variance 2 2
x v . This feature is not available for 

any other discrete equivalent. The noise-whitening 

property of the ACF discrete equivalent can prove to be 

valuable in identification of continuous systems when the 

observations are discrete.  
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( )H s /A D
( )v t [ ]u n

1 ( )acfH z
[ ]x n( )cu t

sT

Figure 3. Noise-whitening property of 
1 ( )acfH z

5. STRUCTURE OF HYBRID WIENER FILTER 

The development of Section 4 enables us to transform the 

hybrid Wiener filter problem of Figure 1 into a pure 

discrete Wiener filter.  

Optimum

Filter

H
opt

(z)
[ ]y n

( )acfH z
[ ]e n

[ ]u n
[ ]v n

( )acfG z
[ ]d n1[ ]v n

+

-
+

[ ]w n

[ ]s n

Figure 4. Discrete Equivalent of Hybrid Wiener Filter 

In Figure 4, ( )acfH z  and ( )acfG z  are ACF invariant 

discrete equivalents of ( )H s  and ( )G s  respectively. Let 

the power spectral density ( )ssS z  of [ ]s n  be 

2 1( ) ( ) ( )ss iS z Q z Q z  (20) 

where ( )Q z  is the minimum-phase part obtained by 

spectral factorization. The causal IIR Wiener filter is 

given by ([1], [5], [8]) 

2 1

( )1
( )

( ) ( )

ds
opt

i

S z
H z

Q z Q z
 (21) 

where ( )dsS z  is the cross power spectral density of [ ]d n

and [ ]s n . The subscript “+” indicates the causal part. 

6. HYBRID WIENER FILTER EXAMPLE 

Let 11, 1k s  and 2 2s  in (5). Casting as an 

estimation problem we take ( ) ( )d t u t . With 1secsT ,

the method of Section 4 produces the following minimum 

phase ACF-equivalent DT system 
1

1 2

0.45364(1 0.2049 )
( )

(1 0.5032 0.04979 )
acf

z
H z

z z
 (22) 

The following causal IIR optimal solution is obtained by 

spectral factorization  

2

0.15666 ( 0.1104)
( )

( 0.4071 0.04199)
opt

z z
H z

z z
 (23) 

For comparison, we discretize ( )H s  by other commonly 

used methods. The mean square errors (MSE) of these 

cases are listed in Table 1. As expected ACF matching 

criterion gives the minimum MSE. The results in this 

example are not based on realizations of the random 

processes. This is in accordance with the fact that the 

Wiener solution requires actual ACF’s and not the 

estimates. 

Discretization Method Mean Square Error 

ACF Matching 0.1574 

Zero Order Hold 0.1590 

First Order Hold 0.1714 

Bilinear (fc=0.25Hz) 0.2141 

Impulse Invariance 0.1639 

Pole-Zero Matching 0.1604 

Table 1 

7. CONCLUSION 

An autocorrelation function (ACF) invariant DT 

equivalent signal model has led to the solution of the 

hybrid Wiener filter. This development is useful for DT 

processing of CT signals and systems.    A discussion of 

time-domain (including transient behavior) and frequency-

domain properties associated with ACF-invariance will 

appear in future work. 
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