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ABSTRACT

A method for the efficient interpolation of uniformly 

sampled discrete time signals is described. The method 

can be used to interpolate N-dimensional discrete signals 

such as audio, images, and 3D medical imaging. As 

opposed to conventional interpolation methods, where 

uniform zero-insertion (expansion) is performed prior to 

low-pass filtering, the proposed method inserts zeros in a 

blue-noise pattern, which has been shown most 

appropriate for this application. This interpolation method 

attenuates undesired replicas solely by the act of noisy 

zero-insertion, resulting in relaxed requirements on the 

order of the interpolation filter, thereby reducing the 

required computations. This work shows that an Nth order 

blue noise pattern reduces the filter order by N. 

1. INTRODUCTION 

The interpolation of digital signals, with various 

interpolation filters in terms of order and linearity, is a 

well-established procedure, [1,2]. The procedure has been 

used for decades to prepare input signals for digital-to-

analog conversion based on the sigma-delta ( )

modulation method, to increase an image’s spatial 

resolution so that it is suitable for printing, and to estimate 

continuous-tone color values of an image during image 

acquisition (i.e., in CFA – Bayer pattern based digital 

cameras, an image is a mosaic of 3 colors; thus image 

acquisition is followed by interpolation to “demosaic” the 

image). There are many proposed interpolation 

techniques, such as Inverse Distance Weighting, Trend 

Surface, Splines, and  Kriging. Along with conventional 

interpolation of uniformly sampled discrete time signals, 

the interpolation of stochastically sampled signals has 

been developed as well, with methods such as the 

Voronoi-Alebach interpolation technique [3,4]. 

Furthermore, it has been proven useful to sample certain 

physical phenomena stochastically rather than uniformly. 

For a stochastic sampling pattern with blue-noise 

characteristics, it has been shown that the aliasing artifacts 

are scattered throughout the spectrum out of the signal 

band, and that they appear as broad-band noise that is 

easily filtered out, [5]. 

In this work, we introduce a stochastic approach for 

the interpolation of uniformly sampled discrete signals. 

This blue-noise interpolation (BNI) technique scatters 

undesired replicas throughout the spectrum, reducing the 

demands on the interpolation filter. We will observe the 

application of the proposed algorithm for 1D signals. 

However, the proposed interpolation procedure may 

easily be extended to N-dimensional signals. 

2. OVERVIEW OF CONVENTIONAL 

INTERPOLATION ALGORITHMS 

Interpolation is defined as a two-step procedure, where an 

input digital signal is first L-fold expanded and then low-

pass filtered, as shown in Fig. 1. The resulting 

interpolated digital signal z[n] is an L-times upsamled 

version of the input digital signal x[n]. In the ideal case, 

where an ideal low-pass filter is used, the resulting digital 

signal z[n] is equivalent to the signal obtained by 

sampling the continuous analog input signal x(t) at a rate 

that is L times higher than the sampling rate of the digital 

input signal x[n] that undergoes interpolation. 

Figure 1: L-fold interpolation procedure 

The first step of the conventional interpolation 

procedure is an L-fold expansion, or upsampling, defined 

by Eq. (1). 
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The L-fold expansion can also be described as a zero-

insertion procedure, where L-1 zeros are uniformly 

inserted between the L samples of the input signal x[n]. 

The expansion operation is linear; however, it is not time-

invariant. The Fourier transform of the expanded 
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sequence Y(j ) can be expressed in terms of X(j ), as in 

Eq. (2). 

jLXjY     (2) 

Figure 2 illustrates a typical spectrum of the expanded 

sequence Y(j ), which is a 4-fold expansion of the input 

sequence X(j ). The expansion procedure creates 

undesired replicas of the input signal spectrum. The 

number of replicas is equal to the number of inserted 

zeros per sample. Also, the replicas are highly correlated 

with the baseband signal (i.e., they have the same spectral 

shape and power). In practice, a low-pass filter that filters 

out the undesired replicas almost always follows the 

expansion procedure. However, the required low-pass 

filtering places a computational burden on the 

interpolation procedure, which is exacerbated in audio 

applications, where heavy filtering is usually required 

prior to  digital-to-analog conversion (DAC), [6]. 

3. BINARY BLUE-NOISE PATTERNS AND BLUE 

NOISE INTERPOLATION 

In typical audio and image signals the power of the input 

signal is usually concentrated in the lowest few frequency 

bins creating strong spikes in the input signal spectrum. 

The undesired replicas created by the process of 

expansion are also strong spikes by themselves. In order 

to remove these spikes heavy filtering is usually required. 

However, this usually is not acceptable due to its 

computational cost (i.e. only lower order filters are 

allowed). Thus, the remaining spikes might cause 

blocking effects in imaging applications or an overload of 

the  DAC in audio applications. Thus, the filtering 

procedure remains the most computationally intensive 

step during conventional interpolation with the order of 

the filter being a tradeoff between the required attenuation 

of the replicas and the computational costs associated with 

filtering. 

The L-fold expansion procedure may be described as a 

mapping in which the input signal samples are mapped to 

a binary pattern of “ones” and “zeros” with mean value 

equal to 1/L, such that the signal samples are mapped to 

the “ones”. In the conventional expansion procedure, the 

binary mapping pattern is periodic, which eventually 

causes undesired replicas. 

In order to reduce undesired replicas, we propose a 

randomization of the periodic binary mapping pattern in 

which the “ones” that correspond to the input signal 

sample locations are randomly interchanged with 

neighboring zeros. When the input signal samples are 

mapped to the randomized binary pattern, the undesired 

replicas are spread and de-correlated from the baseband 

signal. 

Y(j )

X(j )

Figure 2: Spectrum of an input signal and its 4-fold expansion

The resulting binary mapping pattern has a blue-noise 

spectral shape. A blue-noise (BN) pattern is a stochastic 

model for describing ideal aperiodic patterns, where the 

spectrum of such a pattern displays no coherent spikes 

and has a deficiency of low-frequency energy. 

We propose a blue-noise interpolation (BNI) 

procedure in which the input signal samples are mapped 

to a binary BN pattern instead of a periodic pattern. BNI 

improves the expansion step in comparison to 

conventional interpolation by spreading undesired replicas 

into a blue-noise (out of the baseband signal) with no 

coherent strong spikes. As a result, the requirements on 

the interpolation filter order are relaxed. 

BNI also may be described as random zero-insertion, 

as opposed to periodic zero-insertion in the conventional 

procedure. In order not to corrupt a baseband replica, the 

zero-insertion noise pattern has to have a deficiency of 

low-frequency energy, implying that the most suitable 

zero-insertion pattern has BN spectral characteristics. 

Therefore, the baseband signal is not changed and the 

undesired replicas appear as high-frequency random noise 

rather than highly correlated replicas of the baseband 

signal. The statistical properties of the BN mapping 

pattern determine the spectral characteristics of the 

resulting broadband noise. 

4. BLUE NOISE OBTAINED BY JITTERING 

The most common method to create a BN binary pattern is 

to apply jitter to a binary periodic pattern, [5]. To 

demonstrate the benefits of BNI, we examine a 2-fold 

BNI process, where the binary BN sequence e[n] is 

obtained by applying jitter to the periodic signal ep[n], 

given by Eq. (3). Thus, a BN sequence is generated such 

that each “one” in the periodic sequence undergoes an 

equal probability shift in position of either 0 or +1. As a 

result, the “ones” remain either at their original position or 

they interchange with following “zeros”. 
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The autocorrelation function and the power spectral 

density of the BN sequence e[n] are given by Eq. (4) and 

(5), respectively. 
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In the following, it is proven that when the input signal 

x[n] is 2-fold expanded by the BN sequence e[n], the 

spectrum of the resulting signal yBN[n] has reduced 

amplitude replicas as compared to the conventional 2-fold 

expanded sequence. Furthermore, it is shown that the 

replicas are attenuated the same as in the conventional 2-

fold expansion followed by the sample-and-hold filter. 

The input signal x[n] and the 2-fold BN expanded signal 

yBN[n] are related as shown in Eq. (6). 

nnynx BN 2][     (6) 

where [n] is the shift at the sample point 2n. The shift 

is a random variable with a uniform probability density 

function (p (k)=0.5 for k=0,1). Thus, the spectrum of the 

BN expanded signal yBN[n] is given by Eq. (7). 
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The expected value of the power spectral density of 

the BN expanded signal yBN[n] is given by Eq. (8). 
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Let the sequence yC_SH[n] be the 2-fold conventionally 

expanded x[n] followed by the sample-and-hold filter 

(zero-order interpolation). The power spectral density of 

the sequence yC_SH[n] is given by Eq. (9). 
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We conclude that the BN expansion, without any 

filtering, attenuates undesired replicas as a raised-cosine 

low-pass filter (Eq. (8)), which is the same as the 

conventional 2-fold expansion followed by a sample-and-

hold filter, Eq. (9). 

Figure 3 shows an example of the spectrum of a 64-

sample cosine expanded 2-fold by conventional 

interpolation and through the BN interpolation method. 

According to Eq. (8), a 26dB attenuation of the replica at 

the cosine frequency should exist. In this example, a 15dB 

attenuation was achieved, which is less than predicted and 

is due to the short length of the signal (i.e., there is 

significant spectrum leakage). However, we have shown 

that the predicted 26dB attenuation is achieved in the 

expansion of a 256-sample (and longer) sequences. Also, 

we have observed that BN expansion does not degrade the 

phase of the baseband signal. 

We may extend the BNI procedure by comparing the 

ensemble of the BN expanded sequences followed by the 

sample-and-hold and the conventional first-order 

interpolation (bilinear interpolation). The BN expanded 

sequence followed by the sample-and-hold filter (yBN_SH)

can be presented in terms of the conventional 2-fold 

expanded sequence yC[n] (x[n]= yC[2n]), Eq. (10). 

,222_ nnyny CSHBN
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The spectrum and expected value of the power 

spectral density of yBN_SH[n] are given by Eq. (11) and 

(12), respectively. 
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Let the sequence yC_BL[n] be the 2-fold conventionally 

expanded x[n] followed by the bilinear filter. The 

spectrum and power spectral density of the signal yC_BL[n] 

are given by Eq. (13) and (14), respectively. 

cos12_ jXjY BLC   (13) 
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We conclude that the BN expansion, followed by the 

sample-and-hold, attenuates undesired replicas as a raised-

cosine-squared low-pass filter, which is the same as the 

conventional 2-fold expansion, followed by the bilinear 

filter, Eqs. (12) and (14).  

In light of the above analysis, we conclude that by 

performing the BN zero-insertion process, obtained 

through uniform jittering, the filter requirement is relaxed 

by one order. 

We have seen that the resulting attenuation of the 

high-frequency replicas during zero-insertion is defined 

by the spectral properties of the BN sequence (i.e. BN 

sequence defined by Eq. (5) acts as a raised-cosine). It is 

expected that if the BN sequence is better, in the sense of 

the sharpness of the spectrum cutoff, it would potentially 

attenuate replicas even more, thus further reducing the 

requirements placed on the interpolation filter. An 

example of the BN sequence that has sharper roll-off than 

the BN sequence generated by uniform jitter is that 

generated by a 2nd-order  modulator structure. As 

shown in [7], the output of a one-bit 2nd-order

modulator with the input signal equal to zero is 

quantization noise shaped by the double differentiation 

function, the spectrum of which is given by Eq. (15), the 

sum of a delta function and a broadband component. 
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Figure 3: Spectrum of 64-sample cosine 2-fold expanded by 

conventional and BN expansion method

2cos2cos86
2

0NSe  (15) 

Figure 4 compares the broadband parts of the BN 

sequences generated by “jittering” and by 2nd-order

modulation. The latter BN pattern has lower low and 

middle frequencies in the broadband component. Thus, 

we infer that it has the potential to push zero-insertion 

noise even further from the baseband spectrum. 

Simulations show, see Fig. 5, that the 2nd-order BN 

zero-insertion procedure attenuates undesired replicas by 

an amount equivalent to bilinear interpolation, thus 

reducing the interpolation filter order by 2. Thus, our 

conjecture is that the BN sequence generated by an Nth-

order  modulator may attenuate replicas the same as an 

Nth-order filter, thus reducing the interpolation filter order 

by N. 

The aforementioned analyses hold for any L-fold 

expansion. In such a case, the BN sequence is generated 

such that [n] takes value 0, 1,.., L-1 with probability 1/L. 

5. CONCLUSION 

A new interpolation method based on a blue noise zero-

insertion technique has been proposed and analyzed. 

Mathematical analyses show an improvement in the 

attenuation of undesired replicas of the baseband signal 

arising from zero-insertion while performing 

interpolation. It has been shown that the improvement 

depends strongly on the sharpness of the low frequency 

roll-off in the spectrum of the blue noise sequence used in 

the zero-insertion procedure. If the blue noise sequence is 

generated by the uniform jittering procedure, the 

interpolation filter order is relaxed by one order and for 

blue noise sequences generated by an Nth -order 

modulator the filter order requirement is apparently 

relaxed by N orders. In an ongoing effort, we are seeking 

to demonstrate the potential advantages of BNI for multi-

dimensional applications, such as images. 
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Figure 4: Power spectral density of different BN sequences 
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Figure 5: Replica attenuation properties of BNI (uniform jitter 

and 2nd-order ) and conventional bilinear interpolation 
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