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ABSTRACT

An interesting issue of contemplation amongst researchers
working on multi-projector displays is whether spatial super-
resolution can be achieved by overlapping images from mul-
tiple projectors. This paper presents a thorough theoretical
analysis to answer this question using signal processing and
perturbation theory. Our analysis is supported by results
from a simulated overlapping projector display. This analy-
sis shows that achieving spatial super-resolution using over-
lapping projectors is practically infeasible.

Keywords: Fourier transform, signal processing, super res-
olution images, multi-projector display,

1. INTRODUCTION

Recently overlapping projectors are being used in a num-
ber of applications like parallel rendering, creation of depth
of focus effects and removal of shadows cast on the screen
[1, 2]. A salient issue for such displays is, can we achieve
a resolution higher than that of individual projectors when
multiple projectors overlap? This problem is the dual of cre-
ating super-resolution images using multiple lower resolu-
tion camera images [3,4,5,6,7, 8,9, 10, 11, 12, 13, 14, 15,
16, 17], which has been explored with reasonable amount
of success. Thus, it is interesting to investigate if this du-
ality leads to comparable results in projectors. This paper
makes the first attempt to study this problem in a detailed
manner using signal processing theory. This analysis shows
that such a super-resolution display is only possible under
certain strict conditions. Next, using results from perturba-
tion theory, we find that the probability of the occurrence of
these conditions in a practical system is zero. Thus, we in-
fer that super-resolution images from multiple overlapping
projectors is practically infeasible.

2. THEORETICAL ANALYSIS

The analysis and illustrations in this section are presented
for one dimensional signals (one scan line of the display)
for easy comprehension. The results are extended to two-
dimensional images using a simulator that generates the im-
age of four overlapping projector seen by a camera. Our
simulator uses popular geometric models for projectors and
cameras as in [18, 19]. The resolution of the camera is mod-
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eled to be sufficiently high to visualize the different effects
of interleaving pixels from overlapping projectors.

2.1. Image from a Single Projector

Fig. 1. In the frequency domain, sampling (left) and reconstruc-
tion (right) of a single scan-line for a single projector. Left: The
signal P(f) bandlimited by % is convolved with the sampling sig-
nal S(f) to generate the sampled signal C(f). Right: The sam-
pled signal C(f) is multiplied by the reconstruction kernel K (f)
of width % to reconstruct the bandlimited signal R(f).

We consider a single scan-line of a projector represented
by a continuous signal in the spatial domain, whose fre-
quency response is denoted by P(f). Projecting this signal
involves two steps: sampling and reconstruction [20].

Sampling Function: We assume a uniform sampling rep-
resented in the spatial domain by a periodic comb function
with period T', where T is the pixel width of a projector,
i.e. the distance between adjacent pixels. The frequency re-
sponse S(f) of this function is another periodic comb with
period fs = %, where f is the sampling frequency. So,

1 if f=2,;

5(F) = { 0 iff# g;where n is an integer.
Sampling: During sampling, the signal is first bandlim-
ited by % in the frequency domain, to avoid aliasing. This
assures that P(f) = 0, if |f] > f? Next, in the spatial
domain, this bandlimited signal is sampled (multiplied) by
the sampling signal to get the sampled signal, C(f). This
is equivalent to convolving the two signals in the frequency

domain leading to replication of the frequency spectrum of
P(f) at the harmonics of the sampling frequency. Thus,

fs
o(f) = Py« 5(f) = P(f — | L i o

Reconstruction: In the spatial domain, reconstruction is
achieved by convolving the sampled signal with the point-
spread function of a pixel. In the frequency domain, this is
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equivalent to multiplying the fourier transforms of the sam-
pled signal C'(f) and the reconstruction kernel K (f). For
K(f) of bandwidth f,, the reconstructed signal R(f) is
_ _J o) itf <ty
rip=cirmn={ {9 S
If the width of the reconstruction kernel same as the
bandwidth of the signal, (% = fp), proper reconstruction
would occur since the original frequency spectrum P(f)
will be extracted eliminating the replicas at the harmon-
ics. This whole process is illustrated in Figure 1. However,
for a kernel with a larger width (f, > %), for frequencies
f, L < f < fp, the replica at the first harmonic would
contribute introducing aliasing (commonly called pixeliza-
tion). On the other hand, if the kernel has a smaller width
(fp < f < %), the frequencies f, f, < f < E, are
lost leading to blurring. This theory is extended to two di-
mensional images to create these artifacts on our simulator
(Figure 5).

3

2.2. Image from Overlapping Projectors

Next, we investigate projecting a super-resolution scan-line
from two overlapping projectors, denoted in the frequency
domain by P,(f). The spatial resolution of P,(f) is the
sum of the resolutions of the component projectors. This
doubling in the spatial resolution doubles the bandwidth of
the signal to f5. Thus, P,(f) = 0,if | f| > fs.
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Fig. 2. Left: In the spatial domain, the sampling function S(f)
from a single projector separated by pixel width T (top), the sam-
pling function S, ( f) for interleaving of pixels for a scan-line from
two overlapping projectors (one in black and another in pink)
shifted by % (middle), % (bottom). Right: The corresponding fre-
quency response of the sampling functions on the left.

Sampling Function: In the spatial domain, the sampling
signal for two overlapping projectors, S,(f), is given by
the superposition (addition) of two periodic comb functions
(each from a different projector) shifted by a distance [ < T'.
The frequency response of the function is

So(f) = 2S(f)cos*n fi = { 2cos’mflif f = 2

itf# 2,

“)
where n is an integer. Figure 2 shows the spatial and the
corresponding frequency response of such S, (f) for differ-
ent values of [ (I = 2, 4) When [ = T (half the pixel
width), S, (f) becomes zero at odd n generating a periodic
comb with double the samphng freéluencyél ..,

2 ifn= ) 2,4,
So(f)_{ 0 1fn—1,3,5,7,... 3)

This indicates a uniform but denser sampling in the spatial
domain. More importantly, for any other I, S,(f) is an ape-
riodic comb and is always positive at the first harmonic, f;.
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Fig. 3. In frequency domain, sampling of a super-resolution scan-
line P,(f) by So(f) from two overlapping projectors with their
pixels interleaved by % (left) and % (right). In other word, the
super resolution signal P,(f) (top) is convolved sampling signal
So(f) (middie) to generate sampled signal C,( f)(bottom).
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Fig. 4. In frequency domain, reconstruction using a kernel of sup-
port fs (left) and f—; (right) of the super-resolution signal P,(f)
sampled by two overlapping projectors interleaved by a distance
%. For each, the sampled signal C,(f) (top) is multiplied by the
reconstruction kernel K () (middle) to generate the reconstructed

signal RO(lf ) (bottom). )
Sampling of super-resolution signal: When P,(f) is

convolved with S,(f) to form the sampled signal C,(f),
for [ = % the frequency spectrum of P,(f) is amplified
and replicated at even multiples of f, with no contamination
from a replica of P,(f) at the adjacent harmonic (Figure 3).

Colf) = Bo(f) % 5lF) = Pof — 1L 22 12) (6)

2fs
But, for the more general scenario of [ # %, the first har-
monic f, being positive, the spectrum of P,(f) at 0 is con-

taminated by the adjacent replica at f, (Figure 3). Thus,
Col$) = 2PulF =1L f)cos?m L 12~ r)cos™n]
@)

Reconstruction of super-resolution signal: Hence, when
reconstructing signal R, (f) from C,(f) using a reconstruc-
tion kernel K (f) of width f, = fs (double the width of the
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pixel spread function for single projector), when | = %, the
original super-resolution signal P,(f) can be reproduced
with no contamination (Figure 4). This doubling of the ker-
nel width in the frequency domain indicates sharper pixels
in the spatial domain. Thus, if we can interleave the pixels
from two projectors at exactly % and reduce the width of the
point spread functions of each projector by exactly half, we
can achieve super resolution.

However, reconstruction with K (f) of width f, = %

generates just the regular signal P(f) bandlimited by %
Thus, even if we start with a super-resolution signal, we can
obtain lower resolution signal (like in a single projector) if
we do not use sharper pixels.

For the more general case of | # Z, the C,(f) gener-
ated (Figure 3) poses the well-known scenario of aliasing,
irrespective of being reconstructed with K ( f) of width f; or
%. A pertinent question here is, can these aliasing artifacts
be made imperceptible by reducing the high frequencies to
noise using stochastic sampling methods [21], especially by
overlapping off-axis projectors when the projector sampling
functions become aperiodic? The analysis of this situation
shows that due to the underlying uniform sampling of the
projector imaging device, the aperiodicity is purely due to
projection and hence well defined [18]. [22] shows that the
frequency response of an aperiodic comb is another aperi-
odic comb, and nothing close to the white noise achieved
by stochastic sampling. Hence, the aliasing artifacts gen-
erated by these configurations cannot be eliminated by off-
axis projection. The above theory is extended to two dimen-
sional images to generate results for a four-projector system
on our simulator (Figure 5)).

Sampling and reconstruction of regular resolution sig-
nal: However, if P,(f) is not of super-resolution, i.e., P,(f)
P(f), the replicas of P(f) at the harmonics of fs will not
be contaminated by the adjacent replicas in C, ( f), when us-
ing overlapping projectors. Thus, there will be no artifacts
when reconstructing with K (f) of width f, = f? Hence,
we do not observe artifacts when we overlap projectors ca-
sually across their boundaries in multi-projector displays.
The only difference of this process from the case of a sin-
gle projector in the amplification of the reconstructed signal
manifested as higher brightness in the overlap region.

In summary, the results can be extended to two dimen-
sional images from n overlapping projectors. To achieve
super-resolution, the width and alignment of the the pixels
from the n projectors should be manipulated such that (1)
the sum of the pixel widths of all overlapping projectors
is equal to T, and (2) the projectors are aligned in such a
fashion that the modified narrower pixels from one projec-
tor does not overlap with that of another.

2.3. Practical Feasibility
The next question is, “What is the probability that a physical
system of multiple overlapping projectors will satisfy the

Fig. 5. Results from the simulator when the theory is extended
to images. Left: The true resolution image P(f) from a sin-
gle projector reconstructed using kernel of bandwidth % (top),
0.1 x % leading to blurring (middle), and 1.8 X %S leading to
pixelization (bottom). Right: The super-resolution image Po(f)
from four overlapping projectors with pixels interleaved at % and
reconstructed with kernel of width fs (top). Compare this with the
regular resolution image (top left) to verify that super resolution
is achieved. This is sharper than the image reconstructed using
a kernel of support %5 (middle). When the pixels are not inter-
leaved by % aliasing artifacts are generated (bottom). Note the
difference in the embedded text and the spirally engraved rod of
the bike at the back in the images.

above conditions?’ For this, we consider two interleaved
pixels from projector 1 (in white) and projector 2 (in black)
in Figure 6, denoted by the quadrilaterals abed and efgh
respectively. To achieve super-resolution, the right edge, bc,
of the white pixel from projector 1 should coincide with the
left edge, eh, of the black pixel from the projector 2. So, bc
and eh, which are both lines, must intersect at a line.

[23] shows that two geometric entities of dimensions dy
and d respectively embedded in a space of dimension d,
can intersect in a non-degenerate manner at a geometric en-
tity of dimension d; +ds —d.. For a multi-projector display,
d. = 2. Since, bc and eh are both lines, i.e., dy = dy = 1,
so they can meet in a non-degenerate manner at a geometric
entity of dimension dy + ds — d. = 0, i.e, a point. Thus, in-
tersection of two lines in 2D resulting in another line, which
is a necessary condition for super-resolution images, is a de-
generate case. [23] shows that the probability of occurrence
of a degenerate case is zero, and can be disturbed by arbi-
trarily small perturbation of system parameters, like projec-
tor position, orientation and lens parameters.

Intuitively, this result is easy to visualize. The first con-
dition of super-resolution demands interleaving the pixels
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from projectors in a precise manner which is impossible
practically. The second condition requires pixels of each
projector to be manyfold sharper, i.e., image from the pro-
jector will look pixelated when used individually, but can

generate super-resolution images when used in multi-projector

configuration. No current projectors that we are aware of
can achieve the required sharpness in practice.

2D Display Plane Thus, we find that though super-
resolution images can be generated us-
ing multiple low resolution cameras
R images [8], the same is not true for
P projectors even though it is the dual
of a camera geometrically [18]. This
is because the methods for generating
super-resolution with cameras use com-
plex mathematics like least square or
lapping  projectors ~ quadratic minimization [9, 4, 5, 12],
(represented by geometric or photometric image pro-
white, black, red cessing and optimizations [10, 11, 13,
17], and analytical probabilistic meth-

Fig. 6. The align-
ment  of  pixels
from  four over-

and  green) in
order to achieve
super-resolution
images.

ing such complex mathematics from
the projector would involve (a) sub-
pixel accuracy geometric calibration of the overlapping pro-
jectors, (b) complex pre-processing of images to be pro-
jected, and (c¢) controlling the width of different pixels of
the projector differently. Even if we assume that (a) and (b)
are possible theoretically, (c) is an impossible engineering
feat to achieve, especially when the only mathematical op-
eration available from overlapping projectors is addition via
superposition of light.

3. CONCLUSION

In conclusion, in this paper we have showed that generat-
ing super-resolution images using overlapping projectors is

practically infeasible.
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