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ABSTRACT

Quantization noise shaping is commonly used in oversam-
pled A/D and D/A converters. This paper considers quanti-
zation noise shaping for arbitrary frame expansions of sig-
nals based on generalizing the view of first order noise shap-
ing as a compensation of the quantization error through a
projection. Two levels of generalization are developed, one
a special case of the other, and two different cost models are
proposed to evaluate the quantizer structures. Within our
framework, the implementation of the quantizer and recon-
struction are computationally straightforward. The compu-
tational complexity is in the initial determination of frame
vector ordering, which is part of the quantizer design and
carried out off-line. We show that in the case of frame repre-
sentation corresponding to uniform oversampling, the natu-
ral ordering implied by sequential time sampling is optimal.
Furthermore, for general finite frame expansions, the prob-
lem of optimal ordering corresponds to known problems in
graph theory.

1. INTRODUCTION

Quantization methods for frame expansions have received
considerable attention in the last few years. Simple scalar
quantization applied independently on each frame expan-
sion coefficient, followed by linear reconstruction, is well
known to be suboptimal [1, 2]. Several algorithms have
been proposed that improve performance although with sig-
nificant complexity either at the quantizer [3] or in the re-
construction method [3, 4]. More recently, frame quantiza-
tion methods inspired by uniform oversampled noise shap-
ing (referred to generically as Sigma-Delta noise shaping)
have been proposed for oversampled filterbanks [5] and for
uniform tight frames [6]. Our approach is along the lines of
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that proposed in [6] but incorporates the use of projections
and explores the issue of frame vector ordering. It is appli-
cable to arbitrary frame expansions, both finite and infinite,
and provides a design method for optimal first order noise
shaping quantizers.

We view noise shaping as compensation of the error
from quantizing each frame expansion coefficient through
a projection to the space defined by another synthesis frame
vector. This requires only knowledge of the synthesis frame
set and a pre-specified ordering and pairing for the frame
vectors. As we show, this improves the error in reconstruc-
tion due to quantization, even for non-redundant frame ex-
pansions (i.e. a basis set) when the frame vectors are non-
orthogonal.

In section 2 we present a brief summary of frame rep-
resentations to establish notation and we describe classi-
cal first-order Sigma-Delta quantizers in the terminology of
frames. In section 3 we propose two generalizations, which
we refer to as the sequential quantizer and the tree quantizer,
both assuming a known ordering of the frame vectors. Sec-
tion 4 proposes two different cost models for determining
the frame vector ordering, one based on a stochastic rep-
resentation of the error and the other on deterministic up-
per bounds. In section 5 we determine the optimal ordering
of coefficients assuming the cost measures in section 4 and
show that for Sigma-Delta noise shaping the natural (time-
sequential) ordering is optimal. We also show that for finite
frames the determination of frame vector ordering can be
formulated in terms of known problems in graph theory.

2. CONCEPTS AND BACKGROUND

2.1. Frame representation

A vector x in a space W of finite dimension N is repre-
sented with the finite frame expansion:

x =
M∑

k=1

akfk, ak = 〈x, f̄k〉 (1)

The space W is spanned by both sets: the synthesis frame
vectors {fk, k = 1, . . . , M}, and the analysis frame vectors
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{f̄k, k = 1, . . . ,M}. This condition ensures that M ≥ N .
Details on the relationships of the analysis and synthesis
vectors can be found in a variety of texts such as [1]. The ra-
tio r = M/N is referred to as the redundancy of the frame.

2.2. Sigma-Delta noise shaping

Oversampled signals are a well studied example of frame
expansions. A signal x[n] or x(t) is upsampled or over-
sampled to produce a sequence ak. In the terminology of
frames, the upsampling operation is a frame expansion in
which f̄k[n] = rfk[n] = sinc(π(n − k)/r),with sinc(x) =
sin(x)/x. The sequence ak is the corresponding ordered
sequence of frame coefficients:

ak = 〈x[n], f̄k[n]〉 =
∑

n

x[n]sinc(π(n − k)/r)(2)

x[n] =
∑

k

akfk[n] =
∑

k

ak
1
r
sinc(π(n − k)/r) (3)

with similar expressions in continuous time. Sigma-Delta
quantizers can be represented in a number of equivalent
forms [7]. The representation shown in Figure 1 most di-
rectly represents the view that we extend to general frame
expansions. Performance of Sigma-Delta quantizers is typ-
ically analyzed using an additive white noise model for the
quantization error. Based on this model it is straightfor-
ward to show that the in-band quantization noise power is
minimized when the scaling coefficient c is chosen to be
c = sinc(π/r). With typical oversampling ratios, this co-
efficient is close to unity and is often chosen as unity for
computational convenience.
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Fig. 1. Traditional first order noise shaping quantizer

The process in figure 1 can be viewed as a sequence
of coefficient quantization and error projection. Consider
xl[n], such that the coefficients up to al−1 have been quan-
tized and el−1 has already been scaled by c and subtracted
from al to produce a′

l:

xl[n] =
l−1∑

k=−∞
âkfk[n] + a′

lfl[n] +
+∞∑

k=l+1

akfk[n] (4)

= xl+1[n] + el(fl[n] − c · fl+1[n]) (5)

The incremental error el(fl[n]−c·fl+1[n]) at the lth iteration
of (5) is minimized if we pick c such that c · fl+1[n] is the

projection of fl[n] onto fl+1[n]:

c = 〈fl[n], fl+1[n]〉/||fl+1[n]||2 = sinc(π/r) (6)

This choice of c projects the error of quantizing al to fl+1[n]
and compensates for this error by modifying al+1.

3. NOISE SHAPING ON FRAMES

In this section we propose two generalizations of the discus-
sion of section 2.2 to general frame representations.

3.1. Single coefficient quantization

Throughout this discussion we assume the ordering of the
analysis frame vectors, denoted by (f1, . . . , fM ), and corre-
spondingly the ordering of the coefficients (a1, . . . , aM ) is
predetermined. Issues of determining the optimal ordering
are addressed in sections 4 and 5. It should be emphasized
that the ordering can be determined off-line using only the
synthesis frame vector set, not the specific signal being rep-
resented or the expansion frame vectors, i.e. it is part of the
off-line design of the quantizer.

To illustrate our approach, we consider quantizing the
first coefficient a1 to â1 = a1 + e1, with e1 denoting the
additive quantization error. Equation (1) then becomes:

x = â1f1 +
M∑

k=2

akfk − e1f1. (7)

As in (5), we then perform the projection using coefficient
c1,2 to obtain:

a′
2 = a2 − e1c1,2 (8)

where ci,j is, in general, different for each pair of frame
vectors (fi,fj):

ci,j = 〈fi,uj〉/||fj || (9)

where uk = fk/||fk|| are the unit vectors in the direction of
the synthesis frame vectors. After the projection, the resid-
ual component has direction

r1,2 = (f1 − c1,2f2)/||f1 − c1,2f2|| (10)

The corresponding error is e1〈f1, r1,2〉r1,2 = e1c̃1,2r1,2,
where c̃1,2 = 〈f1, r1,2〉 is the error coefficient for this pair
of vectors. Substituting the above, equation (7) becomes

x = â1f1 + a′
2f2 +

M∑
k=3

akfk − e1c̃1,2r1,2 (11)

The component e1c̃1,2r1,2 is the final quantization error af-
ter one step is completed. We iterate the process above by
quantizing the next (updated) coefficient until the last coef-
ficient has been quantized. We call this procedure the se-
quential first order noise shaping quantizer.
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3.2. The tree noise shaping quantizer

The sequential quantizer can be generalized by relaxing the
sequence of error assignments: Again, we assume that the
coefficients have been pre-ordered and that the ordering de-
fines the sequence in which coefficients are quantized. How-
ever, we associate with each frame vector fk another possi-
bly not adjacent frame vector flk further in the sequence
(and therefore for which the corresponding coefficient has
not yet been quantized) to which the error is projected us-
ing equation (8). With this more generalized approach some
frame vectors can be used to compensate for more than one
quantized coefficient. For finite frames, this defines a tree,
in which every node is a frame vector or associated coeffi-
cient. If a coefficient ak uses coefficient alk to compensate
for the error, then ak is a child of alk in that tree. The root of
the tree is the last coefficient to be quantized, aM . We refer
to this as the tree noise shaping quantizer. The sequential
quantizer is, of course, a special case of the tree quantizer
where lk = k + 1.

The resulting expression for x is given by:

x =
M∑

k=1

âkfk −
M−1∑
k=1

ek c̃k,lkrk,lk − eM fM (12)

= x̂ −
M−1∑
k=1

ek c̃k,lkrk,lk − eM ||fM ||uM (13)

where x̂ is the quantized version of x, after noise shaping
and the ek are the quantization errors in the coefficients after
the correction of the k − 1 iteration has been applied to ak.
Thus, the total additive error of the process is:

E =
M−1∑
k=1

ek c̃k,lkrk,lk + eM ||fM ||uM (14)

4. ERROR MODELS AND ANALYSIS

To simplify the analysis of eq. (14) we focus on cost mea-
sures for which the incremental cost at each step is indepen-
dent of the whole path and the data. We call these incre-
mental cost functions. In this section we examine two such
models, one stochastic and one deterministic.

4.1. Additive noise model

The first cost function assumes the additive uniform white
noise model for quantization error, and minimizes the ex-
pected energy of the error E{||E||2}. All the error coeffi-
cients ek are assumed white and identically distributed,with
variance ∆2/12, where ∆ is the interval spacing of the quan-
tizer. They are also assumed to be uncorrelated with the
quantized coefficients. Thus, all error components contribute

additively to the error power, resulting in:

E{||E2||} =
∆2

12

(
M−1∑
k=1

|c̃k,lk |2 + ||fM ||2
)

(15)

4.2. Error magnitude upper bound

As an alternative cost function, we can also consider an up-
per bound for vector addition to analyze equation (14). For
any set of vectors ui, ||

∑
k uk|| ≤

∑
k ||uk||, with equality

only if all vectors are collinear, in the same direction. This
leads to the following upper bound on the error:

||E|| ≤ ∆
2

(
M−1∑
k=1

|c̃k,lk | + ||fM ||
)

, (16)

The vector rM−1,lM−1 is by construction orthogonal to
fM and the rk,lk are never collinear, making the bound very
loose. Thus, a shaping quantizer can be expected in general
to perform better than what the bound suggests.

4.3. Error analysis

In terms of the above cost functions for any quantization or-
dering, the sequential or tree quantizers perform better than
or equal to direct scalar quantization of the frame expansion
coefficients. This is true even if the frame is not redundant.
The equality holds if and only if all the pairs (fk, flk) of the
quantizer are orthogonal. Note also that independent of the
coefficient ordering the cost function has a multiplicative
term of ∆2/12 or ∆/2. These terms only depend on the de-
sign of the quantization intervals, and we ignore them when
comparing orderings. For uniform frames the additive con-
tribution of the last coefficient quantized, ||fM ||2 or ||fM ||,
can also be ignored since it is the same for any ordering. For
infinite frames there is no “last” coefficient. Thus, the com-
parison in both cases only depends on the coefficients c̃k,lk .
We use these properties in considering the optimal ordering.

5. NOISE SHAPING QUANTIZER DESIGN

As indicated earlier, the essential issue in quantizer design
based on the strategies outlined in this paper is determin-
ing the ordering of the frame vectors. The optimal ordering
depends on the specific set of synthesis frame vectors, but
not on the specific signal. Consequently, the quantizer de-
sign (i.e. the frame vector ordering) is carried out off-line
and the quantizer implementation is a sequence of projec-
tions based on the ordering chosen for either the sequential
or tree quantizer.

In this section we propose simple design strategies, and
a lower bound on the cost of the minimum-cost quantizer for
a given frame. We show that the Sigma-Delta noise shaping
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quantizer meets this lower bound. Furthermore, in the case
of finite frames we map the design problem to well-studied
graph theory problems.

5.1. Simple design strategies

An obvious design strategy is to pair the coefficients such
that the quantization of every coefficient ak is compensated
as much as possible by the coefficient alk . This can be
achieved if for any fk we use the flk that is closest to com-
pensate for the error, i.e. that minimizes |c̃k,lk |. If this strat-
egy is possible to implement, it results in the optimal order-
ing under both the cost models we discussed. In fact, this is
exactly how a traditional Sigma-Delta quantizer works, and,
therefore, it is one of the optimal first order structures given
the oversampled frame (another optimal example is the an-
ticausal version). A structure generated using this approach
is optimal under both the cost models we discussed.

For certain frames, however, this optimal pairing might
not be possible. The resulting ordering might contain cy-
cles whereby the quantization of one coefficient ak should
be compensated using an already quantized coefficient alk .
However, even this case, this pairing can be useful in pro-
viding a loose lower bound for the cost of the optimal quan-
tizer. Furthermore, it suggests a heuristic for a good coeffi-
cient pairing: at every step k, the error from quantizing co-
efficient ak is compensated using the coefficient alk that can
compensate for most of the error, picking from all the frame
vectors whose corresponding coefficients have not yet been
quantized. This is a suboptimal but implementable heuris-
tic. We discuss optimal design in the next section.

5.2. Optimal design for finite uniform frames

From section 3.2 it is clear that a tree quantizer can be rep-
resented as a graph—specifically, a tree—in which all the
nodes of the graph are coefficients to be quantized. Simi-
larly for a sequential quantizer, which is a special case of
the tree quantizer: the graph is a linear path passing through
all the nodes ak in the correct sequence. In both cases, the
graphs have edges (k, lk), pairing coefficient ak to coeffi-
cient alk if and only if the quantization of coefficient ak

assigns the error to the coefficient alk .
Assuming a uniform synthesis frame, we can measure

the total cost of the quantizer—subject to the transforma-
tions of section 4.3—using this graph. To do so, we as-
sign to every edge (k, lk) of the graph a weight w(k, lk) =
|c̃k,lk |2 or w(k, lk) = |c̃k,lk | for the additive noise model
or the error upper bound cost functions respectively. By
summing the total weight of all the edges in the graph, we
deduce the total weight of the graph, i.e. the total cost of the
corresponding quantizer.

Using this graph, designing the optimal first order quan-
tizer for a given uniform finite frame corresponds to well

studied graph-theory problems. The minimum cost sequen-
tial quantizer corresponds to the solution of the traveling
salesman problem (TSP), i.e. the minimum weight path that
goes through all the nodes. The TSP is NP-complete in gen-
eral, but has been extensively studied in the literature[8].
Similarly, the minimum cost tree quantizer is given by the
minimum spanning tree, another well studied problem, solv-
able in polynomial time [8]. Since any path is also a tree,
if the minimum spanning tree is an acyclic path through the
graph, then that is also the solution to the traveling salesman
problem. The solutions to these two problems are the opti-
mal sequential or tree quantizer for a given frame, respec-
tively. Note that in general the optimal ordering and pairing
depend on which of the two cost functions we choose.
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