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ABSTRACT

A multirate filter bank model is considered for reconstruction of
periodically sampled signals. In contrast to many previous meth-
ods which considered perfect reconstruction of deterministic sig-
nals, this paper’s approach uses a known discrete-time cyclosta-
tionary signal model to find a minimum mean-squared error re-
construction solution. A primary advantage of this approach is
that it does not require a minimum sampling density, allowing op-
timal solutions to be determined in cases of undersampling. This
allows for consideration of a wide range of generalized sampling
problems under a single framework. An example with simulation
results is presented.

1. INTRODUCTION

Since the introduction of Papoulis’s generalized sampling expan-
sion (GSE) formula [1], there has been much work examining re-
construction solutions to periodic sampling problems. Of particu-
lar interest are techniques making use of multirate filter banks. Es-
tablished results in perfect reconstruction (PR) filter bank theory
[2] can be viewed as a discrete-time version of generalized sam-
pling. In the case of bandlimited signals with sufficiently dense
sampling, the discrete-time filter bank methods are equivalent to
standard continuous-time generalized sampling. However, the dis-
crete-time filter bank approach has a distinct advantage in terms of
feasibility, since a digital implementation is more readily designed.

Some previous filter bank solutions to various periodic sam-
pling problems include [3–9]. These approaches consider deter-
ministic signals with known finite spectral support. Periodic sam-
pling at a sufficient average density allows a PR solution to be de-
termined. These solutions seek to determine reconstruction filter
designs that eliminate aliasing effects caused by nonuniform sam-
pling, or in the most general case, aliasing and distortions resulting
from generalized sampling.

This paper considers periodic sampling of a stationary ran-
dom process with a known power spectral density (PSD). Instead
of finding a PR solution, a reconstruction solution minimizing the
time-average mean-squared error (TAMSE) is determined. Be-
cause this alternate criterion is used, the bandwidth limitations
necessary for a PR solution are not required. While this approach
can be used to determine a PR solution if sufficiently sampled ban-
dlimited signals are considered, the focus of this paper will be on
the case of periodically nonuniform undersampling.
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This paper is organized as follows. Section 2 presents a dis-
crete-time model for the sampled signal and the periodic sampling
process. The optimal reconstruction solution for this model is pre-
sented in Section 3 and an example is discussed in Section 4.

2. MODEL SETUP

The sampling model uses a discrete-time input signal x[n] to rep-
resent a continuous-time random process x(t), sampled uniformly
with spacing TM . This model assumes x(t) is bandlimited to
β = π/TM . Since the spacing TM is used only to define a high-
resolution model and does not represent a physical sampling pro-
cess, it can be made arbitrarily small such that x[n] accurately rep-
resents a real-world signal. The PSD of x[n] is determined from
that of x(t).

The signal x[n] is applied as the input of the filter bank de-
picted in Fig. 1. Each of the C subbands represents an individ-
ual uniform sampler operating at TP . This sampling period is
related to the model sampling period TM through TP = DTM ,
where D is the decimation factor of the filter bank. Typically TM

will be selected such that D > C. The analysis bank is used to
model a physical periodic sampling process of C samples per TP .
Under a generalized sampling approach, any set of linear time-
invariant analysis filters can be considered. However, this paper
will consider a pure sampling process, for which the individual
analysis filters are simply delays. The frequency response of the
kth analysis filter is Hk(ejω) = e−jωdk , meaning the analysis
portion of the kth subband models a uniform sampler collecting
x(nDTM − dkTM ) = x(nTP − dkTM ). The combination of
these C uniform sampling processes forms a periodic sampling
process.

In this paper the model is assumed free from noise and quanti-
zation effects. A minimum MSE solution in the presence of quan-
tization noise was developed in [10] under a bandlimited GSE
framework. Noise analysis using this paper’s framework will be
considered in [11].

The output signal y[n] is formed by passing the periodic sam-
ples of x[n] through the synthesis bank. Since a multirate filter
bank will generally form a linear periodically time-varying sys-
tem, y[n] must be considered to be a cyclostationary process with
period D [12]. A cyclostationary framework from [13] will be
used to determine optimal reconstruction filters (synthesis filters).
This framework allows for consideration of both x[n] and y[n]
as discrete-time wide-sense cyclostationary signals with period D,
or WSCS(D). Such signals have periodically stationary first- and
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Fig. 1. Multirate filter bank structure used for periodic sampling
and reconstruction.

second-order expectations. That is,

E [x[n]] = E [x[n + kD]]

Rxx[n, m] = Rxx[n + kD, m + kD], (1)

for every integer k, where Rxx[n, m] = E [x[n]x∗[m]]. Herein,
this paper assumes the WSCS(D) signals have zero mean. While
in many cases a wide sense stationary (WSS) input will be con-
sidered, a cyclostationary model is still required due to the fact
that the output is not necessarily WSS. Since WSS processes are
WSCS(D), this also serves for generalization purposes.

3. OPTIMAL RECONSTRUCTION SOLUTION

A set of reconstruction filters minimizing the time-averaged vari-
ance of e[n] = x[n] − y[n] (i.e., the TAMSE) is sought. This
variance is defined as

σ2
e = lim

N→∞

1

N

N−1∑
n=0

E [e[n]e∗[n]] =
1

D

D−1∑
n=0

Ree[n, n]. (2)

A relationship between the cyclostationary statistics of x[n] and
y[n] is found in [13]. This relationship will be used to determine
synthesis filters minimizing (2).

The cyclic correlation function of x[n] is found through

Rα
xx[u] =

1

D

D−1∑
k=0

Rxx[k + u, k]e−j2παk, (3)

for α = n/D and integer n. The discrete-time Fourier transforms
of these cyclic correlations produce the cyclic spectral densities
(CSDs) through

Sα
xx(ejω) =

∞∑
u=−∞

Rα
xx[u]e−jωu. (4)

The CSD input/output relationship of a filter bank is found using a
matrix representation for the functions defined in (4). The (p, q)th
element of the D × D CSD matrix is defined by
[
Sxx(ejω)

]
(p,q)

= S(p−q)/D
xx (ejωW p) over |ω| ≤ π/D, (5)

for p, q = 0, · · · , D − 1 where W = e−j(2π/D). This representa-
tion is only valid for |ω| ≤ π/D and completely represents the D
distinct CSDs defined by (4).

The analysis and synthesis filters are represented using alias
component (AC) matrices [2]. The AC matrix representations are
HAC(ejω) =

⎡
⎢⎣

H0(e
jω) · · · HC−1(e

jω)
...

. . .
...

H0(e
jωW (D−1)) · · · HC−1(e

jωW (D−1))

⎤
⎥⎦ (6)

for the analysis bank and FAC(ejω) =

⎡
⎢⎣

F0(e
jω) · · · FC−1(e

jω)
...

. . .
...

F0(e
jωW (D−1)) · · · FC−1(e

jωW (D−1))

⎤
⎥⎦ (7)

for the synthesis bank. As with the CSD matrix representation, the
AC representation is only defined for |ω| ≤ π/D and provides
a complete and unique frequency domain representation for the
corresponding set of filters. An AC matrix product of interest is
defined as

P(ejω) =
1

D
FAC(ejω)HT

AC(ejω). (8)

The CSD matrix of y[n], also defined through (5), is related the
the CSD matrix of x[n] through

Syy(ejω) = P(ejω)Sxx(ejω)PH(ejω), (9)

where the superscript H denotes the conjugate transpose. The
cross-CSD matrices are defined through

Syx(ejω) = P(ejω)Sxx(ejω) (10)

and
Sxy(ejω) = S

H
xx(ejω)PH(ejω), (11)

and are also only valid for |ω| ≤ π/D. The CSD matrix of e[n] is

See(e
jω) = Sxx(ejω)−Syx(ejω)−Sxy(ejω)+Syy(ejω), (12)

which, through (9-11), is found to be a function of the AC matrices
and the CSD matrix of x[n].

The TAMSE defined in (2) is manipulated to find an equivalent
representation as a function of See(e

jω) through

σ2
e =

1

D

D−1∑
n=0

Ree[n, n] = R0
ee[0] =

1

2π

∫ 2π

0

S0
ee(e

jω)dω

=
1

2π

D−1∑
k=0

∫ π/D

−π/D

S0
ee(e

jωW k)dω

=
1

2π

∫ π/D

−π/D

tr(See(e
jω))dω. (13)

The minimization of σ2
e is thus equivalent to the minimization of

tr(See(e
jω)) (since S0

ee(e
jω) is nonnegative). A frequency do-

main representation of the reconstruction filters that minimize the
TAMSE is found by solving the problem

min tr(See(e
jω)) over |ω| ≤ π/D.

FAC(ejω)
(14)

Defining the matrices

Q(ejω) = H
T
AC(ejω)Sxx(ejω) (15)
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and
R(ejω) = H

T
AC(ejω)SH

xx(ejω)H∗

AC(ejω), (16)

the solution to (14) is found to be

FAC,opt(e
jω) = DQ

H(ejω)R−1(ejω). (17)

This solution assumes an inverse to (16) exists.
Applying the optimal solution (17) to See(e

jω) as defined by
(12) determines the optimal error CSD matrix

See,opt(e
jω) = Sxx(ejω) − Q

H(ejω)R−H(ejω)Q(ejω)

= Sxx(ejω) −
QH(ejω)FH

AC,opt(e
jω)

D
. (18)

This result can be applied to (13) to find σ2
e,opt.

In most cases, a numerical solution to (17) will need to be
found. Solving FAC,opt(e

jω) for a selection of frequencies over
|ω| ≤ π/D will determine a discrete representation for the fre-
quency responses of the reconstruction filters. The expression (17)
can be solved for a sufficient number of frequencies to enable de-
sign of an accurate implementation. Similarly, a numerical solu-
tion will typically have to be found to determine the minimized
TAMSE. The optimal CSD S0

ee(e
jω) is found along the diagonal

of (18). A sampled representation for this function can be deter-
mined along with that of FAC,opt(e

jω). An accurate numerical
approximation to the integration of (13) can be calculated. The
sampling density necessary for accurate representation of the syn-
thesis filters will typically provide a sufficiently accurate represen-
tation of S0

ee(e
jω).

The mean-squared value of e[n] will generally be a periodic
with period D. The calculated σ2

e,opt only provides the average
MSE and the expected MSE at any specific index can vary from
this value. However, since e[n] is WSCS(D), the error of any
D-fold decimated sequence obtained from it will have a constant
MSE which can be calculated using a polyphase decomposition of
the synthesis filters. More importantly, it is shown in [11] that the
D-fold decimated sequences of e[n] are individually optimized in
the mean-squared sense by (17). This means that a high resolu-
tion model x[n] (corresponding to a small TM and large D) deter-
mines an optimal high resolution reconstruction solution as well
as optimal lower resolution reconstructions that are composed of
interleaved D-fold decimated subsequences of y[n].

4. EXAMPLE

A periodically sampled 8th order WSS autoregressive (AR) pro-
cess will be considered in this example. The process is generated
by passing unit variance white Gaussian noise through the infinite
impulse response filter

G(ejω) =
b

1 +
∑8

k=1 aie−jkω

where b = .0001 and {a1, · · · , a8} = {−6.9167, 21.8179,
−40.8841, 49.7104,−40.1396, 21.0263,−6.5402, 0.9271}. The
PSD of this AR process is shown in Fig. 2. Periodic sampling will
be considered at an average rate of 1/6th the rate of x[n]. While
Sxx(ejω) does significantly decay at higher frequencies, under-
sampling it by a factor of 6 will still cause aliasing of some of
the more significant portions of its spectrum. The sampling pro-
cess model will use C = 3 uniform samplers, each with sampling
period D = 18 times that of x[n].

0 π / 4 π / 2 3π / 4 π 

20

0

-20

-40

-60

-80

-100

-120

-140

ω

S
x

x
(e

jω
),

 d
B

Fig. 2. PSD of 8th order AR process defined in Section 4.

The two periodic sampling patterns of Fig. 3 will be consid-
ered. Collected samples are indicated by impulse functions, while
Xs indicate indexes where no sample is collected. Only one pe-
riod (D = 18 samples) of each pattern is shown. Pattern (a) is
a periodic nonuniform sampling pattern and pattern (b) is a uni-
form sampling pattern, which is modelled in this case by three
uniformly interleaved samplers. The analysis filters corresponding
to these sampling patterns are integer delays.

0 6 9

0

(b)

(a)

6 12

Fig. 3. Two periodic sampling patterns considered for the AR sig-
nal shown in Fig. 2.

Optimal reconstruction filters are found for both patterns
through (17). The magnitude responses of these filters are shown
in Fig. 4. The nonuniform sampling pattern (a) produces the left
column of filters, and the uniform pattern (b) produces the right
column of filters. The uniform pattern’s filters are identical except
for a linear phase shift corresponding to the sampler interleaving.
The filters are otherwise identical to the optimal filter which would
be produced using a C = 1 and D = 6 filter bank. The nonuni-
form pattern (a) produces three distinct reconstruction filters.

Although both sampling patterns operate at the same average
rate, there is a significant difference in their performances. Nu-
merical integration of the minimized error CSD S0

ee(e
jω) using

(18) and (13) yields errors of 2.6898% of the input signal’s power
for pattern (a) and 7.5759% of the input signal’s power for pattern
(b). This corresponds to an almost threefold reduction in the opti-
mal TAMSE from simply shifting the timing of a single sampler.
A magnified portion of the S0

ee(e
jω) functions are shown in Fig. 5,

along with the input signal PSD. While the nonuniform pattern (a)
provides a significantly lower TAMSE, it is not universally better
than pattern (b) for all frequencies.
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Fig. 4. Magnitude responses of optimal reconstruction filters for
AR input signal in Fig. 2 using periodic sampling patterns in Fig.
3.

Previous work in periodic nonuniform sampling has consid-
ered sub-Nyquist average sampling rates for multiband signals [6,
7] that achieved PR (a sufficient sampling density in proportion to
the signal’s total spectral support was required). This example in-
dicates a similar result can be obtained for undersampled signals
which have segmented areas of power concentration over a con-
tiguous span of spectral support. This paper’s method can also be
used to find a PR solution if a sufficient portion of Sxx(ejω) is
zero and the proper sampling pattern is selected. Selection of an
optimal sampling pattern for a particular PSD will be a topic of
future work.

5. CONCLUSION

This paper has presented a minimized TAMSE reconstruction for
periodically sampled cyclostationary signals. A multirate filter
bank was used to model a periodic sampling process and perform
signal reconstruction. A high resolution discrete-time model was
used in order to consider reconstruction of undersampled signals.
The provided example demonstrated the effectiveness of these re-
sults and used different periodic sampling patterns to illustrate an
area of interest for future investigation.
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