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ABSTRACT 2. FAST RECURSIVE ALGORITHM FOR RDHT

A fast recursive algorithm for computation of the running 

discrete Hartley transform (RDHT) is presented. This 

method is based on the relation between the running discrete 

Fourier transform (RDFT) and the RDHT. The number of

operations for the proposed recursive algorithm is only 2/N

(N=length of the transform) of the direct computation of the

RDHT. It also provides substantially computational savings

compared with the recursive RDFT algorithm. The

transform-domain adaptive digital filter is implemented

based on the presented algorithm. The simulation results of

its implementation on an  adaptive line enhancer are given to

demonstrate the efficiency of the presented fast algorithm.

The running discrete Hartley transform (RDHT) of a discrete 

signal fn is defined as [5]:
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where N is a given integer which stands for the length of the

data segment. For a given n, Hn(m) is the DHT in the

variable k of the data segment fn-k of f n. At the nth time

instant, the data segment to be transformed is fn, fn-1, ... fn-N+1,

and at the (n+1)th time instant, the data segment to be

transformed is fn+1, fn, ..., fn-N+2. Clearly, the data segment to 

be transformed is updated by one sample at each time

instant.

     Let F(z) be the Z-transform of fn, i.e., 

     (2)zf=F(z) n-
n

-=n
1. INTRODUCTION

Then the sequence Hn(m) has Z-transform with respect to n
The discrete Hartley transform (DHT) directly maps a real-

valued sequence to a real-valued spectrum [1]. Compared

with the discrete Fourier transform (DFT), the DHT has 

many advantages. It is an alterative to the DFT for signal 

processing, such as the spectral analysis and fast convolution 

[2]. Fast algorithms for the DHT are, therefore, an active 

research area. The two traditional approaches to DHT

implementation are: using a fast Fourier transform (FFT), 

and direct factorization of the DHT [2]-[4].
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From equation (1), we have 
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      In certain signal processing applications such as

transform-domain adaptive digital filtering, a data segment

to be transformed is shifted ahead one sample at each time

instant to update the data. It is called the running discrete 

Hartley transform (RDHT) if the DHT is applied in the 

transform-domain adaptive digital filter [5]. In this paper a 

fast recursive algorithm for computation of the RDHT based

on the relation between the RDHT and RDFT is presented.

This algorithm has speed advantages over the direct

computation of the RDHT and the RDFT approach. Results

of its application in the implementation of the adaptive line

enhancer are given to demonstrate the efficiency of the

presented fast algorithm.

                                                                                        (4) 

By taking the inverse Z-transform on the above equation, the

following recursive equation can be obtained : 
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Similarly, for a N-length data segment fn the running discrete 

Fourier transform is defined as [6] 
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It can be easily shown that the corresponding recursive 

equation for Zn(m) is 
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By comparing (1) and (6) we have 
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It can be proven that for the real-valued data sequence fn the 

following is valid: 
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Combining (10) and (11), we have 
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Now from (9) we finally have 
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The above equation is the proposed recursive algorithm for 

Hn(m).

       It can be seen from the above equation that only two real

multiplications and additions are required, respectively, for 

the computation of each RDHT coefficient. One additional 

addition is needed to compute N-length RDHT values over 

each data segment. Thus, the total number of real

multiplications and additions is 2N and 2N+1, respectively. 

For the direct computation of an N-length RDHT coefficient

using equation (1), the number of real multiplications and 

additions is N N and N (2N-1), respectively. Obviously, the

number of operations using the proposed recursive algorithm

is only 2/N of the direct  computation and  is also faster than 

the use of the directly deduced recursive equation (5). Unlike 

the recursive equation (7) for the RDFT, the proposed 

recursive algorithm is real and no complex arithmetic is 

involved. This represents a considerable saving in

computational complexity over the RDFT.

3. APPLICATIONS OF THE RDHT IN 

TRANSFORM-DOMAIN ADAPTIVE DIGITAL 

FILTERING

 Fig.1. Structure of a transform-domain adaptive filter

It is known that the time-domain adaptive filter using the 

least mean-square (LMS) algorithm converges slowly,

especially when the eigenvalue spread of the input

autocorrelation matrix is large [6], [7]. An approach to 

acceleration the convergence rate is to somehow transform

the filter input signal into another signal with the 

corrersponding autocorrelation matrix having a small

eigenvalue spread. This can be achieved by performing the

adaptive filtering in the orthogonal domain. In the transform-

domain LMS adaptive digital filter, the eigenvalue spread is

reduced by whitening the power spectrum of the input signal

[6]. The structure of the transform-domain adaptive filter is

shown in Fig 1. dn in Fig.1 is the primary input, fn is the 

reference input, and Hn(m) is the RDHT coefficients of the 

input data segment fn, f n-1, ..., fn-N+1 computed by the 

proposed recursive algorithm. The output of the filter, yn is
1

0

)()(
N

i

nnn iwiHy                 (14) 

where wn(i) is the ith filter weight at the nth time instant. The 

weighted output is subtracted from the primary input to form

an error signal: 

(15)y-d=e nnn

The LMS algorithm for the adaptation of the filter weights is

written as follows: 

(i)He
||(i)H||

+(i)w=(i)w nn

n

n1+n (16)

where µ is a small positive constant, called step size,

controlling the rate of convergence and 
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It denotes the energy content of the input signal over the 

length of the filter. The LMS adaptive constant in the above

equation is time-varying and is inversely proportional to the 

input energy. 

      The enhancement and detection of a coherent sinusoid in

noise occurs in many applications of signal processing. The

adaptive line enhancer (ALE) is one possible solution to this

problem [8]. Fig.2 shows a block diagram of the ALE

implemented by the transform-domain adaptive digital filter

using the proposed algorithm. The ALE primary input is dn

and the ALE reference input is a delayed version of the

primary input signal, i.e., 

Fig. 2. Block diagram of the adaptive line enhancer;

TDADF, transform-domain adaptive digital filter. 

(18)d=f -nn

The delayed input signal used as reference decorrelates noise 

component of the input signal.

4. RESULTS 

Two simulation results of the transform-domain ALE are

provided in the following to demonstrate the efficiency of

the proposed method. Due to the limited space, the 

successful applications of the proposed algorithm to real data

are presented in  [11]. 

                 (D) Power spectra: 

                        Dashed: Input signal 

                        Solid: Filtered output

4.1. Example 1

The ALE primary input is a sinusoidal signal with power,

, corrupted by additive white noise vn with zero mean [5] 

v+n)
25

2
(2=d nn cos (19)

      We chose the order of the filter N=32, step size µ= 0.1,

=2 and =1.  The original signal is shown in Fig. 3a, the 

filter input with additive noise in Fig. 3b, and the enhanced

output in Fig. 3c. The enhancement of the sinusoidal signal 

is more clearly observed in the power spectra of the filter 

input and output signals as shown in Fig. 3d. It can be seen

that a reduction of about 30 dB of noise level is achieved, 

whereas the original signal is not affected.

4.2. Example 2 
Fig. 3. An example of simulation results of the adaptive 

transform-domain line enhancer. (A) The original signal; (B) 

the filter input with white noise; (C) the enhanced output;

(D) power spectra of  the filter input and enhanced output 

signals.

A sinusoid corrupted by multiplicative noise also occurs in 

several signal processing applications [9], [10]. Consider 

that the ALE primary input is a sinusoidal signal corrupted

by multiplicative noise bn

n)
25

2
()b+2(= nnd cos (20)
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4. CONCLUSION

In this paper, a fast recursive algorithm for computation of

RDHT is proposed. The computation complexity of the

proposed algorithm is only 2/N of the direct computation of

a RDHT. Unlike the recursive RDFT, the fast recursive

RDHT algorithm is real and no complex arithmetic is

involved. Thus this algorithm has speed advantages over the

direct computation of the RDHT and RDFT approach. The 

simulation results demonstrate that the adaptive transform-

domain line enhancer using the proposed fast RDHT is

efficiency for reducing the power levels of both additive 

noise and multiplicative noise.

                 (D) Power spectra: 
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