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ABSTRACT

In this paper the method of tensor representation of an
image with respect to the Fourier transform and its appli-
cation for image enhancement is described. The method
is based on the fact that the two-dimensional (2-D) image
can be represented by a set of 1-D signals that split the
2-D Fourier transform of the image into different groups
of frequencies. Each splitting-signal carries information of
the spectrum in a specific group. The processing of the
image is reduced to processing splitting-signals. The ef-
fectiveness of such approach is illustrated through the pro-
cessing image by α-rooting method of enhancement. We
propose to enhance image by processing only one or a few
splitting-signals, to achieve image enhancement which in
many cases can exceed the enhancement by α-rooting me-
thod. The selection of such splitting-signals is described.

1. INTRODUCTION

The traditional transform-based methods of image proces-
sing [1, 2] are based on calculation of an 2-D unitary trans-
form F , for instance the discrete Fourier transform (DFT),
of the image, transformation of all, or part of spectral com-
ponents of the transform, and then calculation of the inverse
transform F−1. The 2-D N ×N-point DFT can be split by
different subsets of frequencies by separate 1-D DFTs, and
the problem of 2-D image processing in the frequency do-
main can thus be reduced to processing separately spectral
components at these subsets. We here consider the splitting
developed by Grigoryan, which is called the tensor repre-
sentation, when the 2-D DFT is calculated by minimum
number of 1-D N-point DFTs [3, 4]. A modification of the
tensor representation, which is called the paired represen-
tation and reduces the 2-D DFT to a minimal number of
short 1-D DFTs [3], can be considered in a similar way.

In this paper a representation of an image in the form of
the certain totality of 1-D ”independent” splitting-signals is
discussed for performing operations over images such as the
2-D linear filtration in methods of transform-based image
enhancement. Rather than process the image by traditional
methods of the Fourier transform, we will process separately
splitting-signals and then calculate and compose the 2-D
DFT of the processed image, by new splitting-signals. Fi-
gure 1 shows a diagram of processing an image {fn,m} of
size N × N by the Fourier transform. One of the selected
splitting-signals {fp,s,t; t = 0 : (N − 1)} is calculated and
processed by the method of 1-D α-rooting. The 1-D DFT
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Fig. 1. Image processing by one splitting-signal.

of this signal is then calculated and recorded at the corres-
ponding set of frequencies of the 2-D DFT of the image.
The processed image {gn,m} is calculated by the 2-D in-
verse DFT. To estimate the quality of processed images, we
consider the quantitative measure EME of image enhance-
ment that relates to concepts of the Weber’s and Fechner’s
laws of the human visual system. The detailed description
of this measure and methods of finding optimal parameters
of image enhancement can be found in [5]. Experimental
results with different types of images, including aerial and
medical images, show that a high quality enhancement can
be achieved by processing only one or a few splitting-signals,
and many arithmetic operations can be saved.

2. SPLITTING-SIGNALS

The N × N-point DFT of an image f, accurate to the nor-
malizing factor 1/N, is defined by

Fp,s = (FN,N ◦ f)p,s =

N−1∑
n=0

N−1∑
m=0

fn,mW np+ms (1)

where W = exp(−2πj/N). Frequency-points (p, s) are from
the set X = {(p, s); p, s = 0 : (N − 1)}. The designation
p = 0 : (N − 1) denotes p as an integer that runs from 0
to (N − 1). Set X can be covered by a family of subsets
σ = (Tk)k=1:l to be defined, in a way that the 2-D Fourier
transform of image f at subset Tk becomes an image of the
1-D N-point Fourier transform, FN , of an 1-D signal, f (k).
In this case we say that the covering σ reveals the 2-D DFT,
which means that:

(a) 1-D transforms FN of f (k) compose a splitting of
the 2-D DFT

F [f ] ↔
{
FN [f (1)],FN [f (2)], . . . ,FN [f (l)]

}
. (2)
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(b) The set of splitting-signals f (k), k = 1 : l, define

completely the image, {f (1), f (2), . . . , f (l)} ↔ f. Number l
of splitting-signals equals N + 1, when N is a prime, and
3N/2, when N is a power of two.

If σ is a covering revealing the 2-D DFT, then the al-
gorithm of the transform FN,N ◦ f can be described by the
following steps.

Step 1: Calculate splitting-signals fT , T ∈ σ.
Step 2: Calculate 1-D transforms FN ◦ fT .
Step 3: Fill the 2-D DFT at frequency-points of subsets

T, by using the calculated 1-D DFTs.
We are interested in a such set of splitting-signals that

provides an effective performance of image enhancement
through processing splitting-signals.

3. IMAGE TENSOR REPRESENTATION

The concept of tensor representation of the image relates to
the covering σ = (T ) defined by the following cyclic groups
with generators (p, s)

Tp,s =
{
(0, 0), (p, s), (2p, 2s), . . . , (kp, ks)

}

k = card T − 1, T0,0 = {(0, 0)}
(3)

where we denote by p the number p mod N. Points of Tp,s

lie on parallel lines at an angle of θ = tan−1(p/s) to the hor-
izontal axis. The irreducible covering σ of set X, which is
composed by groups Tp,s is unique. For instance, the cove-
ring of the 3×3 set X is defined by σ = (T1,1, T0,1, T2,1, T1,0).

The following property holds for the 2-D DFT [3]

Fkp,ks =

N−1∑
t=0

fp,s,tW
kt, k = 0: (N − 1), (4)

where
fp,s,t =

∑
Vp,s,t

fn,m , t = 0: (N − 1). (5)

Sets Vp,s,t are defined by {(n, m); np + ms = t mod N}.
Vp,s,t, if it is not empty, is the set of points (n, m) along

a maximum of p + s parallel straight lines defined by the
following equations

xp + ys = t
xp + ys = t + N

. . . . . . .
xp + ys = t + (p + s − 1)N.

⎫⎪⎬
⎪⎭

(6)

In the bounded domain [0, N ] × [0, N ], these parallel lines
lie at angle ψ = tan−1(s/p) to the horizontal axis.

Covering σ = (Tp,s) reveals the 2-D DFT, and the
splitting-signals (or image-signals) are defined by

fT = fTp,s = {fp,s,0, fp,s,1, . . . , fp,s,N−1}. (7)

It means that for each set T ∈ σ

(FN,N ◦ f)|T = FN ◦ fT . (8)

We use the notation |T for the restriction of data on T.
The 2-D DFT is split into a set of the 1-D transformations
{FN ,FN , . . . ,FN}. The totality {fT ; T ∈ σ} is called a
tensor, or vectorial-representation of f with respect to the

DFT, and the transformation χ : f → {fT ; T ∈ σ} is called
a tensor transformation.

Splitting-signal fTp,s determines the 2-D DFT at frequen-
cy-points of the group Tp,s, and the following one-to-one
correspondence holds

fTp,s ↔ {F0,0, Fp,s, F2p,2s, . . . , F(N−1)p,(N−1)s}.
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Fig. 2. (a) Truck image. (b) Splitting-signal fT4,1 . (c)
1-D DFT (in absolute scale) of the splitting-signal. (d)
Arrangement of values of the 1-D DFT in the 2-D DFT of
the image at frequency-points of set T4,1.

As an example, Figure 2 illustrates the truck image of
size 512 × 512 in part a, along with splitting-signal fT4,1

of length 512 in (b), the 1-D DFT over this splitting-signal
in (c), and frequency-points of group T4,1 at which the 2-D
DFT of the image is filled by the 1-D DFT in (d).

A processing of splitting-signal fT yields a change in the
Fourier spectrum at frequency-points of the corresponding
group T. After performing the inverse 2-D discrete Fourier
transform, such a change may be observed in the spatial
domain at points along the parallel lines of sets Vp,s,t, t =
0 : (N − 1).

4. IMAGE ENHANCEMENT

In the tensor representation, an image is considered as the
image of 3N/2 splitting-signals and the 2-D DFT of the
image as the set of 3N/2 1-D DFTs, when N is a power
of two. Figure 3 shows the 2-DFT of the truck image (in
absolute scale) in part a, along with the picture of 1-D DFTs
performed over all splitting-signals of the image.

We can select splitting-signals by maximums of the ener-
gy they carry. By the Parseval’s equality, the energy that
splitting-signal fTp,s carries is equal to

Ep,s =
1

N

N−1∑
t=0

f2
p,s,t =

N−1∑
t=0

| Fkp,ks |2 . (9)
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Fig. 3. (a) 2-D DFT of the truck image 512 × 512 and (b)
512-point 1-D DFTs of 768 splitting-signals.

Figure 4 shows the graph of function Ep,s for all ge-
nerators (p, s) of groups Tp,s in the order given in the fol-
lowing construction of the covering σ = {{T1,s; s = 0 :
N−1}, {T2p,1; p = 0 : (N/2−1)}}. The splitting-signal with
the maximum energy 22.83 is fT0,1 . The next five signals of
high energy are fT128,1 , fT1,0 , fT192,1 , fT64,1 , and fT1,256 . We
recommend to use these splitting-signals for image enhance-
ment.
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Fig. 4. The energy curve of 768 splitting-signals of the truck
image.

The improvement in images after enhancement is very
difficult to measure. The analysis of the existing trans-
form-based image enhancement techniques developed in re-
cent years show that to select optimal processing parame-
ters and to measure the quality of images, the quantative
measure EME of enhancement that relates to Weber’s law
of human visual system can serve as a building criterion for
image enhancement [4, 5].

Such measure is defined as follows. Let g be the image

obtained after processing image f by the Fourier trans-
form-based enhancement algorithm with parameter α. In
general, α may be a vector parameter. A discrete image g
of size N × N is divided by k2 blocks of size L × L, where
L = N/k. The quantative measure is calculated by

EMEα(g) =
1

k2

k∑
m=1

k∑
n=1

20 log

[
maxm,n Mα(g)

minm,n Mα(g)

]
(10)

where maxm,n Mα(g) and minm,n Mα(g) respectively are
the maximum and minimum of image g inside the (m, n)th
block. The value of EME(f) is called the enhancement
measure of the original image.

As an example, Figure 5(a) shows the measure of en-
hancement of the truck image in the curve described. The
operation of a Fourier-transform-based image enhancement
has been parameterized by a varying in the interval [0, 1].
The curve has a maximum at point α0 = 0.92. The expe-
rimental results show that the parameter α0 corresponds
to the best visual estimation of enhancement. Figures 5(b)
and (c) illustrate the enhancement g of the original image f
via the enhancement transform when α = 0.92, which yields
the enhancement EME0.92(g)−EME(f) = 17.43− 9.81 =
7.62. Blocks of size 7 × 7 are used in definition (10).
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Fig. 5. Fourier transform image enhancement by α-rooting.

In the tensor representation, the Fourier transform me-
thod of image enhancement can be performed by processing
one or a few splitting-signals fTp,s , Tp,s ∈ σ. As an applica-
tion, we consider the α-rooting method of image enhance-
ment [1, 2], when processing one selected splitting-signal.

Algorithm of Image Enhancement
Step 1: Perform the 1-D DFTs of the splitting-signal

fTp,s → Fk =

N−1∑
t=0

fp,s,tW
kt, k = 0 : (N − 1).

Step 2: Multiply the transform of the splitting-signal
by coefficients Ck = A|Fk|

α−1, k = 0 : (N − 1), where A is
a constant.
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Step 3: Fill (change) the 2-D DFT by the new 1-D DFT
at frequency-points of subset Tp,s.

Step 4: Perform the inverse 2-D DFT.
In general, we can process all splitting-signals by the

1-D α-rooting method with a fixed parameter α, as well as
process separately splitting-signals by different (optimal)
values of parameter α, to achieve an optimal enhancement.
The optimality is with respect to the enhancement measure
EME. Thus, we may change Step 2 in the algorithm, by
using different (or, optimal) α ∈ (0, 1] for splitting-signals.

As an example, Figure 6 shows the 513th splitting-signal
fT0,1 in part a, along with the result g of image enhance-
ment by this signal in b. The achieved enhancement equals
EMEα(g) = 16.24, when α = 0.96. We here recall that
the traditional α-rooting by the 2-D DFT yields the opti-
mal value 0.92 with image enhancement 17.43. The 513th
splitting-signal leads to the highest enhancement by EME,
when considering parameter α to be equal 0.96.
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Fig. 6. (a) Splitting-signal fT0,1 and (b) image enhanced by
this splitting-signal.

Other splitting-signals can also be used for effective en-
hancement of the truck image. Figure 7(a) shows the graph
of the enhancement measure EME(n; αo) calculated af-
ter processing only one, the nth splitting-signal for αo =
0.95, where n = 0 : 767. The splitting-signal fT1,256 is
shown in b, along with coefficients Ck, k = 0 : 511 in c,
and the enhanced image g in d. The enhancement equals
EME0.95(g) = 13.45, but it can be improved if we use
the optimal value of α for this splitting-signal. Figure 8
shows the curve of function EME(256, α), when α varies
in the interval [0.6, 1]. The value 0.97 is optimal for this
splitting-signal fT1,256 which leads to image enhancement
EME0.97(g) = 15.96.

Thus, in the new view of the image processing, the
image is represented as a set of 1-D splitting-signals and
the problem of image enhancement in the frequency do-
main is reduced to processing one or a few splitting-signals.
This approach allows us to achieve the enhancement and
save many arithmetical operations when processing the 2-
D DFT of the enhanced image.
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