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ABSTRACT

Among parametric methods for speech enhancement, one
consists in combining an autoregressive model for speech
and a Kalman filter. This filtering is optimal in the H,
sense providing the initial state vector, the input and the
observation vectors in the state space representation of the
system are independent, white and Gaussian. However,
these assumptions do not necessarily hold when processing
speech. In this paper, we propose to investigate an
alternative approach, which is based on H,, filtering and
hence does not depend on these restrictive assumptions. In
that setting, the purpose is to minimize the worst possible
effects of the noises and system uncertainties on the
estimation error. A comparative study between Kalman
and H.,, filtering is carried out, when the additive colored
noise can be modeled by a Moving Average (MA) process.

1. INTRODUCTION

When a speech signal s, is corrupted by an additive
background noise #,, various methods have been

developed to retrieve speech from a single sequence of
noisy observations yy :

Vi =Sk 1y 1)
Indeed, in addition to short term spectral attenuation
[4], parametric approaches can be considered to enhance
speech. On the one hand various subspace methods, listed
in [3], have been proposed for the last 10 years. The
underlying assumption is that speech is a sum of complex
exponentials. On the other hand, a Kalman filter can be
considered [12] [8] [6] [5] [11]. In that case, the existing
methods are all based on:
e an AutoRegressive (AR) model for speech:

P
S = _Zaisk—i +a; @)
i

where {a,}_, ~are the AR parameters and «, is the

driving process, which is a zero-mean white Gaussian

2

sequence with variance o, .

e a state space representation of the system of the form:
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x, =®x, . +Tu
{_k X1 Uy 3)

Vi =Hxp +vg
. . . . . 2
where u, is the input vector with covariance matrix o,

v, the observation noise with variance 05 , ® the

transition matrix, I’ the input matrix and H the
observation vector. In addition, the state vector x,,

defined from at least p samples of speech, satisfies:
Sp =Lx, “4)
where L is a row vector.

In an H, setting, the estimation of the speech signal
can be done by using the finite-horizon a posteriori
Kalman filtering. This method is a recursive way to
estimate x, by minimising the /7, norm of the estimation

error defined as follows:
N

Ja = Yllsi =54l 5)
k=1

where |||| , denotes the standard L, norm and §; = LX; is

the estimate of the speech signal s, .
The state vector is thus recursively estimated as

follows:
X, =dx,  +K; (yk _Hq)im) (6)

—1
where K, =P H (HPkH Ty 03 ) and the symmetric
matrix P > 0 satisfies the following Riccati recursion [1]:

P =@ Py ®jy +TogT"

) )
— (Dk_lpk_lHT(HPk_lHT + 03) Hpk—l®£—1
Kalman filter is optimal in the H, sense providing the

initial state vector, u, and v, are independent zero-mean

white and Gaussian [1]. However, these restrictive
assumptions do not always hold in real case, due to the two
following model uncertainties.

o The limits of the AR model for speech

In our field of interest, it is difficult to satisfy the modeling
constraints as the driving process «, is not available and

not perfectly known. When ¢, is assumed to be white and

Gaussian, the AR model (2) is well suited for noise-like
speech such as unvoiced consonants /p/, /s/ or /f/.
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However, it cannot really capture the quasi periodic nature
of voiced speech frames, such as vowels. For this reason,
in the framework of speech coding [2], the so-called long-
term predictor is often considered to model the driving
process: each sample is expressed from the sample which
is a pitch period before. In [9], Goh ef al. take advantage of
this idea and propose a Kalman filter based speech
enhancement method in which the excitation ¢ 1is

adjusted to the analyzed speech frame. This approach has
the advantage to satisfy the whiteness assumption made on
the input vector u, for both voiced and unvoiced segment.

Nevertheless, the sizes of the matrices in the state space
representation of the system get much larger, leading to a
higher  computational cost. In  addition, the
Voiced/UnVoiced (V/UV) decision and the estimation of
the pitch are all the more difficult to complete as only
noisy observations are available.

o The additive noise modelling issue

Since only one microphone is used, one has to detect non
speech segments with a Voice Activity Detector (VAD) to
find a well-suited model for the additive quasi-stationary
noise 7 .

Stoica’s whiteness tests [15] can be used to define whether
n, 1is white or colored. However, they are not always

reliable, particularly when the noise is “close to” a white
Gaussian noise and few samples are available.

When the noise is colored and a ¢™ order AR model is
considered, the solution consists in defining the state
vector as the concatenation of the p last samples of signal
and the ¢ last samples of the additive noise. However, this
choice leads to the problem of the so-called noise free
state-space representation of the system because v, =0
[1]. For this reason, a coordinate transformation must be
introduced to reduce the dimension of the filter [8].

When choosing a Moving Average (MA) model, #,

satisfies:
q

ny :Zbiﬂkﬂ' (®
i=0

where {b; } are the MA parameters and 5, a

i=0,q
. . . . . 2
zero-mean white Gaussian noise with variance O',B. It

should be noted that depending on the spectral properties
of n; , the order ¢ can be more or less high. In that case,

the state vector related to the state space representation (3)
can be defined as follows:

T
|
Ikzl:sk Sk—p+1 Wk WZ} ©

q+l—j

where w/ = Zbi+j—1ﬂk—i ,j=L..q.
i-1

Hence, the matrices involved in the state space
representation (3) are given by:

H, o(p.1)
r=| 7 ’ ,H=[H, H,], L=H,,,,
|:O(q,1) [bl . bq ]T P q p+q
__al e “en _ap ]
0 0 0 (5.0
0 o0 P.q
0 0 0
and ® = 01 0 ol
0 0
0O(q, p) . X
L 0 0]

where O(p,q) denotes the pxg null matrix and
H,=[1 0

Defining v, = b,5, , i.e. a white Gaussian process with

0] with r-1 zeros.

variance 03 = bg Gé , the measurement equation in (3) is:

Vi :Sk+W]1€+b()ﬂk :H§k+vk. (10)
Besides, the driving process vector u(k) is given by:
1275
u, = (11)
|:ﬂk—1:|
2

. . . 0

with covariance matrix o2 =| @ 2 |
u 0 O-ﬁ

Therefore, assuming that the additive noise can be
modelled by a MA process makes it possible to satisfy the
whiteness assumptions on v, and u(k).

In any case, fulfilling the whiteness constraints leads
to high computation cost method that requires a VAD,
V/UV decision and robust pitch estimation. To avoid a
Kalman filter based solution, the H,, filtering can be an
appealing alternative approach (see part 2). Indeed, in the
literature dedicated to signal processing, many papers deal
with the H, estimation. They often propose theoretical
results but few real applications are addressed. Therefore,
our purpose is here to evaluate the relevance of H,
filtering for speech enhancement. According to our
investigations, only Shen ef al. have proposed a H,
filtering based speech enhancement algorithm [14], where
the AR parameters are also estimated by using a H., filter.
However, no comparison with previously developed
Kalman based methods is completed. In addition, the AR
parameter estimation errors must be avoided as much as
possible, to analyze the relevance of H,, to enhance speech.
For this reason, we here propose to replace Kalman filter
by H, filter in the well-known methods presented in [12]
and [8]. A comparative study is then completed in part 3
with various coloured additive noises.
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2. THE H, FILTERING PROBLEM
2.1. State of the art

The H,, theory historically appeared in 1981 [17] as an
alternative to the H, theory in the framework of automatic
control. The idea is to minimize the worst possible effects
of the disturbances (noises or system uncertainties)
through a system on the estimation error. The noises of the
state-space representation (3) are only assumed to have
bounded energies.

Polynomial approaches [10] have been the first
solution proposed to the H,, estimation problem. However,
they lead to complicated formulas and are not used in
practice. Another kind of approaches is based on the game
theory [16]. In that case, a statistician plays against nature.
Its strategy is to consider the worst possible perturbation of
the nature and to minimize the cost of that perturbation.
Besides, two families of state-space approaches have
emerged:

o the first one is based on the resolution of a convex
optimization problem under Linear Matrix Inequality
(LMI) constraints [7]. However, the computational cost
is quite high.

e the second state-space approach consists in solving a
suboptimal H, problem leading to the so-called
Algebraic Riccati Equation (ARE) [13]. The resulting
equations are easy to implement and the computational
cost is lower than the previous approaches. In the
following, we will more particularly focus on them.

2.2. The ARE based-H.,, filtering
When dealing with H,, filtering, the additive colored noise

a, and n, are not modelled but are only assumed to have

finite energies, respectively denoted Q and R. The state
vector is hence defined as follows:

T
)_Ck =[Sk Sk—p] (12)
and we also have :
u, =u, =a, and v, = n,, with finite energies,

_al e e —a

p
1 0 0 0 T
D= . .|, T =H=HpandL=H.
0 . 0 :
0O 0 1 0

In an H, setting, the problem is to minimise the
estimation error s, —§; for any u,, v, and uncertainty of

the initial state. The problem is then equivalent to
minimize the following criteria (the H,, norm):

N-1 .12
Z"Sk_skHQ
J, = sup — k=0
k=

(13)

S I e 2] s, -3,

1

It should be noted that in relation (13) |s —§1||§ is

only considered when initial conditions are unknown.
Calculating the supremum J,, is a hard task. For this

reason, the following suboptimal H,, problem is usually
considered:

J. <y’ (14)
where y is a prescribed noise attenuation level.

Given the level y finite horizon a posteriori H,, filter
solving the problem (14) exists if and only if:
P +H TH-yI"L>0 (15)
where P, satisfies the following Riccati recursion:
P =®, P @, +To,T’

I H
_(Dk—lPk—l [HT LT]-A/[ {L:lpqu)/fl

0 H

2:|+|: :|Pk1[HT LT]'

—y L

In that case, the estimations of the state vector and the
speech signal are updated as follows:

X, =0x,  +K; (J’k _chik—l) (17)

(16)

. R
with M :{
0

where K, = P,H(R+ HP,H" ).
Although H,, ARE (16) reduces to the conventional
Kalman ARE (7) when y — o, two differences remain

between H,, filter and Kalman filter :

¢ unlike the H, problem, a solution to the problem (14) is
not always guaranteed since the H,, ARE has indefinite
quadratic terms. This hence leads to the condition (15).

e the row vector L plays a role in the ARE (16), which is
not the case in (7). Indeed, H, filter deals with the
estimation of the state but also aims at estimating an
arbitrary linear combination of the state vector
components. This property is all the more appealing in
the framework of speech enhancement as s, = Lx, .

3. SPEECH ENHANCEMENT SIMULATIONS

3.1. Introduction

The theoretical approach leads to the belief that H,, filter
may be a relevant approach for speech enhancement. In
this section, we propose to replace H,, filter by Kalman
filter in the two following standard approaches:

e In Paliwal’s method [12], the AR parameters and the
noise features are respectively estimated from the clean
speech signal and the noise sequence, both assumed
available. The noisy observations are then filtered to
retrieve the speech signal. Although this method cannot
be used in real cases, it makes it possible to focus on the
filtering step as no parameter estimation error disturbs
the enhancement.
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e The second one is based on Gibson’s method [8] based
on a simplified Expectation-Maximisation (EM)

algorithm. The model parameters and the variance o

are first estimated from the noisy observations. The noisy
observations are then filtered. Subsequently, the
parameters are alternately estimated from the enhanced
signal and then used to filter anew the noisy signal. The
estimation of the additive noise characteristics is done or
updated during silent periods.

3.2. Protocol, results and comments

The comparative study we complete is based on Signal-to-
Noise Ratio (SNR) improvements and informal subjective
tests. We use the utterance /WAZIWAZA/, sampled at
16 kHz. In addition, three colored additive noises at three
SNR are here considered:

e Noise MA1: a 4™ order MA noise is generated with the

corresponding zeros 0.2¢*/*'” and 0.2¢/°°" .

e Noise MA2: a 6™ order MA noise is generated with the

corresponding  zeros  0.9¢™/**" . 0.8¢*/*"  and

+50.6
0.9¢=/°°7 .

o Real car noise: the noise is recorded in a running car.

For the simulations on synthetic data, results are based on
100 realizations of the noise. The AR model parameters
are estimated with the Levinson algorithm [9]. For the H,,
based method, the optimal value of y is estimated with an

optimization procedure based on the SNR and is used for
the whole sentence.

For the first noise MAI1, the optimal value for the
estimation of y is “close to” infinity. The results obtained

with both filters are very similar. See tables 1 and 2.

In the MA2 noise case, the colored Kalman filter
outperforms the H, filter. The H, based algorithm
provides a significant enhancement of the speech without
any modeling assumption on the noise. Besides, the
optimum value for y depends on the input SNR.

For real car observation noise, results are very similar.
However, the computation cost is higher when using
Kalman filtering since the order of the MA model for the
additive noise is high.

The results exhibit quite similar results. However, H.,
based approach have the advantage to avoid restrictive
assumption and the computational cost is therefore lower.

SNR Noise MA1 Noise MA2 Real car noise

(dB) KaIllma H, Kalllma H, Karllma H,

15 3.73 3.72 | 433 3.41 0.54 | 0.59

10 5.09 5.06 5.59 | 439 1.05 1.02

5 6.58 | 649 | 646 | 6.36 1.89 1.75

SNR Noise MA1 Noise MA2 Real car noise
(dB) | Kalma . Kalma . Kalma I,
n n n

15 4.01 4.01 6.60 6.66 | 0.62 0.59

10 542 | 543 8.87 | 8.71 1.14 1.15

5 6.94 6.97 | 11.51 | 11.00 | 2.06 | 2.11

Table 1: SNR improvements in dB; Paliwal’s method

4. CONCLUSION

In this paper, we complete a comparative study between
Kalman and H, based speech enhancement algorithms.

Table 2: SNR improvements in dB; Gibson’s method
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