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ABSTRACT

This paper focuses on extending the weighted median for
use with multidimensional (multichannel) signals. Sorting
multicomponent (vector) values and selecting the middle
value is not well defined as in the scalar case. This paper in-
troduces two median based multivariate filtering structures
inspired by ML estimates of location in multivariate spaces.
Unlike Astola’s weighted vector median filter, the multi-
channel weighted median filter structures introduced in this
paper are able to exploit the spatial and cross-channel corre-
lations embedded in the data. Adaptive optimization algo-
rithms for the filters are derived. The effectiveness of these
algorithm is shown through image and array processing ex-
periments.

1. INTRODUCTION

The formulation of weighted median filtering in multivari-
ate domains can be found through the minimization of a
weighted cost function that takes into account the multicom-
ponent nature of the data. The first approach was taken by
Astola et.al where the original definition of Vector WM fil-
tering requires the extension of the original WM filter def-
inition as follows (Astola 1990 [1]). The filter input vec-
tor is denoted as X = [X; X, ... Xn]7, where X; =
[X} X2 ... XM]T is the ith M-variate sample in the fil-
ter window. The filter outputis ¥ = [Y* V2 ... YM]T,
Recall that the weighted median of a set of 1-dimensional
samples X; ¢ =1,... , N is given by

N
Y = argmin Willsen(W;) X; — 3. 1
gmin Y [Wilsgn(Ws) Xi = 8 ¢))

i=1

Extending this definition to a set of M-dimensional vectors
X;fori=1,..., N leads to

N
Y:argfninZ|Wi|||5—§i||p- @)
B i=1
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where ¥ = [}71: V2., YM]T’ S = Sgn(Wi)fi, and
Il - || is the L, norm defined as

13— Sill = ((B* — 81 + (.. + (BM — sMy)> . (3)

The vector weighted median thus requires IV scalar weights,
with one scalar weight assigned per each input vector sam-
ple. Unlike the 1-dimensional case, Y is not generally equal
in value to one of the 5’; Indeed, there is no closed-form so-
lution for Y. Moreover, solving (2) involves a minimization
problem in a M-dimensional space that can be computation-
ally expensive. To overcome these difficulties, a suboptimal
solution for (2) is found if Y is restricted to be one of the
signed samples S; asin

N
Y =argmin Y [Wi||5 - Sill, - “
Be{Si} i=1

Several optimization algorithms for the design of the weights
have been developed. Despite their existence, weighted vec-

tor medians have not significantly spread beyond image smooth-

ing applications.

In the following, more general vector median filter struc-
tures are presented. These structures are capable of captur-
ing and exploiting the spatial and cross-channel correlations
embedded in the data. They can also be adapted to admit
positive and negative weights using sign coupling.

2. WEIGHTED MULTICHANNEL MEDIAN
FILTERING STRUCTURES

The multivariate filtering structure is derived from the ML
estimate of location, this time in a multivariate signal space.
Consider a set of independent but not identically distributed
vector valued samples, each obeying a joint Gaussian distri-
bution with the same location parameter /i,

LSRN Een ()

X)= w7
T (2m) 2| Cy|2

where X; and i are all M-variate column vectors, and C;'
is the M x M cross-channel correlation matrix of the sample
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X,;. The Maximum Likelihood estimation of location fi can
be derived as

N N
= (Z cz-> (Z C,PX’Z) : ©)
i=1 i=1

As in the univariate case, a general multivariate filtering
structure results from the maximum likelihood estimator as

N
v =S wWrx, @

i=1

where W, = (£, €;) €7,

An example of an optimal filter design algorithm for this
linear filtering structure is shown by Robinson (1983) [2]. It
presents one inconvenience: the size of the weight matrix.
For instance, to filter a 3-channel color image using a 5x5
window requires the optimization of 225 weights. Alter-
native filter structures requiring lesser weights are needed.
The following approach provides such implementation.

2.1. Weighted Multichannel Median (WMM) Filter I

In most multichannel applications, the signals from sub-
channels are often correlated in stationary or at least quasi-
stationary structures. In these cases it can be assumed that

C;'=q¢C" (8)

The corresponding MLE is then

N -1/ N
fio= (Z Qicl> (Z Qichi> )
i=1 i=1
In consequence, the filtering structure can be formulated as

N
Y = Y uw'x; (10)
i=1
where V; is the (time/spatial) weight applied to the ith vec-
tor sample in the observation window and W is the cross-
channel weight matrix exploiting the correlation between
the components of a sample. The filter thus consists of
M? + N weights. In the example of a RGB image with
a 5 x 5 window, the number of weights would be reduced
from 225 to 3% + 25 = 34.

Even though it is mathematically intractable to derive a
similar result as in (10) from a multivariate Laplacian dis-
tribution, it is still possible to define a nonlinear multivari-
ate filter by direct analogy by replacing the summations in
(10) with median operators. This filter is referred to as the
Weighted Multichannel Median (WMM) and is defined as
follows (Li et al. (2004) [3]).

Y = MEDIAN(|V;| o sgn(V;)@; |, (11)

i=1

MEDIAN(|W7!| o sgn(Wit) X7 M)

MEDIAN(|WM| o sgn(W7M) X7 |1 )
(12)

is an M -variate vector. As it was stated before, there is
no unique way of defining even the simplest median over
vectors, in consequence, the outer median in (11) can have
several different implementations. Due to its simplicity and
ease of mathematical analysis, a suboptimal implementa-
tion where the outer median in (11) is replaced by a vec-
tor of marginal medians can be used. Thus, the Marginal
Weighted Multichannel Median (Marginal WMM) is de-
fined as

MED(|V;| o sgn(Vi)Q; 1)
Y = ; ()
MED(|V;| o sgn(Vi)Q} [X;)
where Q¢ = MED(|W7'| o sgn(W7)X] |})) for I =
1,... M.

)

2.2. Weighted Multichannel Median (WMM) Filter 11

There are some applications where the initial assumption
about stationarity stated in (8) may not be appropriate. The
need of a simpler filtering structure remains, and this is why
a more general structure for median filtering of multivariate
signals is presented. In such case replace (8) by

C;! = diag(g;)C™! (14)
qilcll qu1cv1M
qIOME o gl

In this case, the cross-channel correlation is not stationary,
and the ¢! represent the correlation between components of
different samples in the observation window. The linear fil-
tering structure reduces to

Y

> diag(V))WX; (15)
V! Wity

= Z : , (16)

VM S WM ]

where V! is the weight reflecting the influence of the Ith
component of the ith sample in the /th component of the
output. The weights W% have the same meaning as in the
WMM filter I. Using the same analogy used in the previous
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case, a more general weighted multichannel median filter
structure can be defined as
MEDIAN(|V;'| o sgn(V;' YMEDIAN(|W4'))
osgn(Wo) X7 [JL )L,
V= :
MEDIAN(|V;M | o sgn(V;" YMEDIAN(|W?M))
osgn(WM) X7 ML )L,
A7)
This structure does not require suboptimal implementations
like the previous one. The number of weights increases, but
is still significantly small. For the image filtering example,
the number of weights willbe M x (N + M) = 84.
In the following section, optimal adaptive algorithms for
the structures in (11) and (17) are defined.

3. FILTER OPTIMIZATION

LMA algorithms for the optimization for the weights of
both filtering structures were developed. The observed pro-
cess is denoted as X (n), the desired output is D(n). The
results of the process are shown below.

3.1. Optimization for the WMM Filter I

Assume that the time/spatial dependent weight vector is V=

[Vi Vo ... Vn]T, and the cross-channel weight matrix is
W = [W¥]|M_,. The adaptive algorithm for V is as fol-
lows,

Vi(n +1) = Vi(n) + posgn(Vi(n)é” (n)GP (n),  (18)

where GP =GP ... GP"|" and GP' = sgn(sgn(V;)QL—
DY forl=1,...,M.
The updates for W are as follows

W +1) = W)+ (19)
pusgn(W = (n)e! (n) (V7 (n) A% (n)),

where A* = [A5 Ay ... A%]T, and A? = &(sgn(V;) Q! —
DYsgn(sgn(Ws) X —Q!) fori =1,... , N, where §(z) =
1 for 2 = 0 and §(x) = 0 otherwise.

3.2. Optimization of the WMM Filter 11
The updates for V result in
Vi +1) = Vi) + pe(n)sen(V, ()G 20)
On the other hand, the updates for W are given by:
W +1) = W*(n) + pesgn(W*(n))e'(n) (21)
(V" () A ()

that is basically the same as (20) with the differer}ce that
V is now a matrix and A** = [4(sgn(V}))Q: — D")sgn(
sgu(W*) X7 — Q))IL,].

i=1

4. SIMULATIONS

4.1. Color image denoising

A RGB color image contaminated with 10% correlated salt-
and-pepper noise is processed by the WVM filter, and the
marginal WMM filter separately. The observation window
is setto 3x 3 and 5 x 5. The optimal weights for the marginal
WMM filter are obtained first by running the LMA algo-
rithm derived above over a small part of the corrupted im-
age. The same section of the noiseless image is used as a
reference. A similar procedure is repeated to optimize the
weights of the WVM filter. The resulting weights are then
passed to the corresponding filters to denoise the whole im-
age. The filter outputs are depicted in Figure 1. As a mea-
sure of the effectiveness of the filters, the mean absolute er-
ror and the Peak signal-to-noise ratio (PSNR) of the outputs
were calculated for each filter, the results are summarized in
Table 1.

Table 1 shows that the marginal WMM filter outper-
forms the WVM filter by a factor of 3 in MAE, or 8-11dB
in PSNR. Also, the output of the WVM filter is visually less
pleasant with many unfiltered outliers. Notice that the out-
put of the marginal WMM filter with the smaller window
preserves more image details and has a better PSNR though
the MAE in the two cases are roughly the same.

Table 1. Average MAE and PSNR of the output images.

Filter MAE PSNR (dB)
3x3 5xb 3x3 5x5
Noisy signal 0.1506 14.66

WVM 0.0748 0.0732 2341 27.74
marginal WMM  0.0248 0.0247 32.26 32.09

4.2. Array Processing with the WMM filter 11

To test the effectiveness of the WMM filter I1, a simple array
processing problem with real-valued signals is used. The
system shown in Figure 2 is implemented. It consists of a 3
element array and 3 sources in the farfield of the array trans-
mitting from different directions and at different frequencies
as indicated in the figure. The goal is to separate the signals
from all sources using the array in the presence of alpha
stable noise. In order to do so, a WVM filter, a marginal
WMM filter and a WMM filter II all with a window size of
25 are used. The filters are optimized using the algorithms
described earlier in this paper, with a reference signal whose
components are noiseless versions of the signals emitted by
the sensors.

The results obtained are summarized in Figure 3 and Ta-
ble 2. Figure 3 shows that the WMM filter II is able to ex-
tract the desired signals from the received signals at the sen-
sors successfully. The WVM filter and the marginal WMM
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Fig. 1. Multivariate medians for color images in salt-and-
pepper noise, u = 0.001 for the WVM, p,,, p,, = 0.05 for
the marginal WMM. Noiseless image, contaminated image,
WVM and marginal WMM with 3 x 3 window, WVM and
marginal WMM with 5 x 5 window.

filter I are unable to do so. Linear filters were implemented
with adaptive algorithms to optimize them for this problem
but the impulsiveness of the noise made the optimization
algorithms diverge.
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