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ABSTRACT

Polynomial filter theory methods are able to approximate
important classes of nonlinear systems. In the impulsive
noise environments, however outliers are amplified by the
polynomial structure, yielding poor performance. Median
filters are well-known for their impulsive noise suppression
and fine-detail preservation. In this paper, we extend the
weighted median (WM) filtering to a polynomial class, Poly-
nomial Weighted Median (PWM) filters which exploit higher
order statistics while being robust to outliers. The PWM fil-
ter class is motivated by a study of the statistics of cross and
square terms. The breakdown probability for the PWM is
given and weight optimization is presented. Finally, the ef-
fectiveness of the PWM filter is shown through simulations.

1. INTRODUCTION

In many digital signal processing problems it is necessary to
introduce nonlinear systems. A possible way to describe the
input-output relation in a nonlinear system that is amenable
to characterization, analysis, and synthesis, is to use a dis-
crete Volterra series representation [1]. In many cases, a
nonlinear system can be presented by a truncated version of
Volterra series, which results in a simpler representation and
requires a limited knowledge of the higher order statistics.

If the input-output relation is restricted to the quadratic
term of a Volterra processor, the system becomes a second-
order polynomial filter [2]. Indeed, the second-order filters
are successfully used to address many digital signal pro-
cessing problems, such as the optimal detection of a sig-
nal in Gaussian noise as well as texture discrimination. The
quadratic structure of the second-order polynomial filter pos-
es a significant problem in impulsive noise environments,
as the cross and square terms residing in the second-order
Kernel amplifies the effects of outliers. This paper devel-
ops a Polynomial Weighted Median (PWM) filter structure
that is robust to noise, thus overcoming the short-comings
of the conventional polynomial filtering. The proposed filter
structure is motivated by WM optimality , and the statistics
of the square and cross terms. The study of the heavy tails
of the square and cross terms demonstrate that robust meth-
ods for their sample combinations should be considered to

avoid undue effect of outliers. We also addressed the PWM
filter weights optimization.

The remainder of paper is organized as follows. The
statistics of cross and square terms are examined through
the tail analysis in Section 2. In Section 3, the PWM filter
derivation is introduced, the weights optimization scheme is
given, and the breakdown probability analysis is presented.
The simulations evaluating the performance of the proposed
filter are presented in Section 4. Finally, the conclusions are
drawn in Section 5.

2. STATISTICS ANALYSIS

The most popular extensions of the Gaussian distribution
are those characterized by the generalized Gaussian distri-
bution:

f(x) =
k

2σΓ(1/k)
exp (−|x − µ|/σ)k (1)

where Γ(x) =
∫ ∞
0

tx−1e−tdt is the Gamma function. In this
representation, the scale of the distribution is determined by
σ > 0 and the impulsiveness is determined by k > 0. The
presentation in (1) includes the standard Gaussian distribu-
tion as a special case for k = 2. For k < 2, the tails de-
cay slower than in the Gaussian case, resulting in a heavier
tailed distribution. A second special case that is of partic-
ular interest is k = 1, which yields the Laplacian distribu-
tion. It is well known that the linear and median filters are
the Maximum Likelihood (ML) estimates of location un-
der Gaussian and Laplacian distributions, respectively. The
filters are smoothers when the weights are restricted to pos-
itive values, and more general filter characteristics are ob-
tained by relaxing this constraint and allowing real-valued
(positive/negative) weights.

Consider now the statistics of the cross and square terms
that reside in the quadratic structure of the second-order
polynomial filter. The effects of the product and square op-
erators on a random variable’s (rv) distribution’s tail are of
particular interest. In the following analysis we utilize the
zero-mean Laplacian distribution:

Ψxi
(t) =

1

2λxi

e−|t|/λxi (2)
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(both Laplacian) and x2
i (Laplacian) with zero-mean and

σxi
=

√
2 and λxi

= 1 for Gaussian and Laplacian statis-
tics, respectively

where λxi
is the scale parameter. The probability density

function (pdf ) of a rv generated by squaring a Laplacian
distributed rv xi is given by:

Ψx2

i
(t) =

1

2λxi

√
t
e−

√
t/λxi (3)

Also, the pdf of a rv generated by the product of two in-
dependent Laplacian distributed rvs xi and xj , with scale
parameters λxi

and λxj
, respectively, is given by:

Ψxixj
(t) =

K0

(
2

√
|t|

λxi
λxj

)

2λxi
λxj

, (4)

where Kn(·) is the modified Bessel function of the sec-
ond kind of order n. For large values of t, K0(t) behaves
like 1/(

√
t)e−t [3]. Thus Ψxixj

(t) can be approximated as

1/(2
√

2t1/2)e−2
√

t for λxi
= λxj

= 1. Also, Laplacian
distribution (2) and equation (3) become Ψxi

(t) = 1/2e−|t|

and Ψx2

i
(t) = 1/(2

√
t)e−

√
t, respectively, for λxi

= 1. For
large t, the tail decay rate order is γxi

> γxixj
> γx2

i
,

where γx denote the tail decay rate of Ψx(t). The tails of
Laplacian distribution in (2) and pdf s given in (3) and (4)
are shown in Figure 1 for λxi

= λxj
= 1. As expected, the

tail of Ψxixj
(t) is heavier then that of Ψxi

(t), and the tail
of Ψx2

i
(t) is heavier then that of Ψxixj

(t). The heavy tails
of the cross and square terms indicate that robust methods
for their sample combinations should be considered to avoid
undue influence of outliers.

3. MEDIAN-TYPE POLYNOMIAL FILTERING

It is known that polynomial models are capable of approxi-
mating a large class of nonlinear systems with a finite num-
ber of coefficients [2]. Consider the class of nonlinear, shift

invariant systems with memory based on the discrete-time
Volterra series. The input-output relation, in the case of a
finite support, is given by:

y =

∞∑
k=1

h̄k[xi] (5)

where y is the output, xi, xi−1, ..., xi−N+1 are the input
samples, and h̄k is defined by:

h̄k[xi] =

N−1∑
i1=0

· · ·
N−1∑
ik=0

hk(i1, ..., ik)xi−i1 · · · xi−ik
(6)

Note that this is a causal formulation and that causality can
be relaxed without conflict. Also, for k=1 in (6), the term
h1(i1) is the usual linear impulse response, and the term
hk(i1, ..., ik) can be considered as the finite extent k-th or-
der impulse response that characterizes the nonlinear behav-
ior of the filter.

It is worth noting the use of the quadratic term in ad-
dition to the linear term is often sufficient to yield perfor-
mance improvements [2]. The second-order polynomial fil-
ter is given by setting the upper limit in the above equation
to K=2:

y = C1

N−1∑
i1=0

h1(i1)xi−i1+C2

N−1∑
i1=0

N−1∑
i2=0

h2(i1, i2)xi−i1xi−i2

(7)
where h1(i1) is a N×1 vector representing the first-order,
h2(i1, i2) is a N×N matrix representing the second-order
Volterra Kernel, and C1 and C2 are constants [2]. Note that
although the overall filtering operation is (polynomial) non-
linear, the filter output is linear with respect to the filter co-
efficients and observation sample, their squares, and cross
terms. The linear combination of samples is the ML es-
timate of location only in Gaussian noise case. For heav-
ier tailed distributions, more robust methods must be de-
veloped. Though it is mathematically intractable to derive
the ML estimate for cross terms and squared observation
samples under Laplacian statistics case, by analogy we can
approximate their performance with median operators since
they have heavier tails closer to the median optimal Lapla-
cian then to the linear optimal Gaussian distribution. Thus,
we define a powerful nonlinear second-order filter by sep-
arating all the linear, square, and cross terms contributions
in (7), replacing the summation operators with median op-
erators, and incorporating sign coupling accordingly [4].
The newly formulated filter is referred to as the Polynomial
Weighted Median (PWM) filter:

y = C ′
1MED(|h′

1| � sgn(h′
1)x1)

+ C ′
2,2MED(|h′

2,2| � sgn(h′
2,2)x2,2)

+ C ′
2,1MED(|h′

2,1| � sgn(h′
2,1)x2,1)

(8)
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Fig. 2. The PWM filter coefficients optimization with the
Normalized fast LMA

where x1 = [xi, xi−1, ..., xi−N+1], x2,2 = [x2
i , x

2
i−1, ...,

x2
i−N+1

],and x2,1 = [xixi−1, xixi−2, ..., xixi−N+1, xi−1

xi−2, xi−1xi−3, ..., xi−N+2xi−N+1], are the input sample,
square, and cross term vectors, respectively, and h′

1, h′
2,2

and h′
2,1 are first-order, square, and cross term filter Kernels,

respectively. It is clear that if we set the new constants as
C ′

2,1=0, C ′
2,2=0 and C ′

1=1, then the PWM filter reduces to
the traditional WM filter.

Consider next, the breakdown probability (bdp) of the
PWM filter. The bdp is used as a measure of filter robustness
[5], and is the probability of an impulse occurring at the
output of the filter. It is related to the probability p of an
impulse in the input. The WM filters in the PWM filter
are nonlinearly coupled, to simplify the analysis we assume
that the filters are independent, and given that an impulse
occurring at the output of at least one of the WM operators
will result a breakdown, yields the approximated β(p) and
defined as:

β(p) ≈ 1− (1− βxi
(p))(1− βx2

i
(p))(1− βxixj

(2p− p2))
(9)

where β(p) denotes the bdp of the PWM filter and βxi
, βx2

i
,

and βxixj
, represent the bdp for first-order, square term, and

cross term WM filters, respectively.
The filter weights optimization is realized through the

fast LMA [4], which is modified to a Normalized fast LMA
due to quadratic structure of PWM filter. Also, the coef-
ficients C ′

1, C ′
2,1, and C ′

2,2 are adapted with the standard
LMA. The complete optimization block diagram is shown
in Figure 2.

4. SIMULATIONS

In this section, the proposed PWM filter is evaluated through
several investigations. The breakdown probability of the
PWM filter is implemented and compared with the second-
order Volterra filter. Next, simulations in noise-free environ-
ment are presented comparing the Volterra and PWM filter
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Fig. 3. The bdp of a single WM with xi inputs, second-
order PWM filter with xi and x2

i , second-order PWM filter
with xi, x2

i , and xixj , and standard second-order Volterra
filter, are represented in solid line, dashed line, dotted line
and dash-dotted line respectively, for N=7

outputs. Volterra and PWM filters are then tested utilizing
heavy-tailed noisy signals. The power spectrum analysis
is also applied to the filter outputs. Finally, the L1 norm
error for filter outputs, under different types of noise distri-
butions, including Gaussian, Laplacian, and α-Stable, are
given.

In the implementation of the bdp for the filters, the PWM
filter weights are set to unity, which yields the most robust
case for each sub-filter. Fig. 3 gives the bdp of a stan-
dard WM filter, second-order PWM filter with linear and
square terms, second-order PWM filter with linear, square,
and cross terms, and second-order Volterra filter, all for N=7.
The Fig. shows that the PWM filter is much more robust
than the Volterra filter, with a bdp slightly larger than the
robust WM. Thus the PWM filter offers far greater impulse
rejection, and more robust performance than the standard
Volterra filter.

The input signal used in the following experiments, is
sin(w1n)+sin(w2n), where w1=π/10 and w2=π/50. The
PWM filter weights are adapted in a system identification
configuration using the second-order Volterra filter output as
the desired signal. Fig. 4 shows the outputs of the second-
order Volterra filter and the PWM filter in noise-free and
noisy environments. It is clear that the PWM filter performs
very similarly to the Volterra filter, with absolute mean error
of 0.1581 for the noise-free signal case. It can also be noted
that in the Laplacian (L), σ2=0.25 noisy input case, that
the PWM filter suppress the impulses, for instance at n=25,
n=125, and n=225, while preserving the fine details. The
information at these times however, is completely lost in
the standard second-order Volterra output.

The input signal used in the following output power spec-
trum density (psd) analysis, is sin(w1n)+sin(w2n), where
w1=π/5 and w2=π/10. Fig. 5 shows the filters output psds
in Laplacian L, σ2=1 noisy input case. In this case, two ad-
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Fig. 4. (a) is noise-free input signal, (b) standard Volterra
and (c) PWM filter output, (d) noisy input signal (L with
σ2=0.25), (e) standard Volterra and (f) PWM filter output
for noisy input

ditional frequency components are expected in the psd esti-
mation due to the quadratic structure of the Volterra system.
The output frequency information is completely recovered
in PWM filter case. The standard Volterra, however fails to
recover the output frequency information due to the impul-
sive noise.

As a measure of the effectiveness of the filters in the
noisy environments, the average L1 norm error of the fil-
ter outputs and PWM filter performance gain, denoted as
K, are given in Table 1 for different noise distributions, in-
cluding Gaussian (N ), Laplacian (L), and α-Stable distri-
butions, and powers. The statistics in Table 1 show that the
PWM filter outperforms the standard second-order Volterra
filter in heavy-tailed noise cases, and that the filters perform
similarly in Gaussian (N ) noise case.

5. CONCLUSIONS

The PWM filter, novel polynomial filtering approach is pro-
posed for heavy-tailed noise environments. The higher-order
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Fig. 5. (a) The standard Volterra filter output psd estimation
and (b) PWM filter output psd estimation

statistics of Laplacian distribution is analyzed. The break-
down probability of PWM is given, with the weights opti-
mization scheme. It is shown, through the simulations, that
the proposed PWM filtering overcomes the drawbacks of
the standard Volterra filtering in impulsive noise.

Table 1. Mean Absolute Filtering Errors

Noise Power Volterra PWM K
Noise Free - 0.1581 -

(N ) σ2=0.25 0.6139 0.6582 - 0.07 %

(L) σ2=0.25 0.7839 0.4557 41.87 %
σ2=1 1.8476 0.9397 51.75 %
σ2=4 4.5489 1.6917 62.14 %

(α-Stable) α=1.4 22.1276 2.3063 89.58 %
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