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ABSTRACT

In linear filtering, the set-membership normalized least mean

squares (SM-NLMS) algorithm has been shown to exhibit

desirable features of selective update and optimized variable

step size. In this paper, a kernel approach to the SM-NLMS

algorithm is presented that makes it feasible to address non-

linear problems. An online greedy approximation technique

to achieve sparsity is discussed. Simulation results are pre-

sented for two practical problems: equalization of nonlinear

inter-symbol interference (ISI) channels and predistortion

of nonlinear high power amplifiers (HPA).

1. INTRODUCTION

Nonlinear distortion, either memoryless or with memory,

when encountered in a system, deteriorates the system per-

formance considerably. Volterra systems have been used for

the analysis and compensation of such nonlinear distortions

[1]. Recently, support vector machines (SVM) have been

gaining popularity due to their improved generalization per-

formance and sparsity of the solution for classification and

regression [2], [3]. However, both of these approaches have

high computational requirements resulting from identifica-

tion of Volterra kernels and solution to quadratic program

(QP) respectively.

The set-membership (SM) approach for linear adaptive fil-

tering has been well studied recently [4], [5]. A kernel-

based approach to SM-NLMS [6] is presented here to ad-

dress nonlinear problems. The attractive features of opti-

mized variable step-size and selective update of the con-

ventional SM algorithms carry over to the nonlinear case

as well. Apart from having lower training complexity than

the SVM, the kernel SM-NLMS algorithm has an added ad-

vantage of online adaptation of the filter coefficients while

the classical SVM approach follows a batch-learning im-

plementation. This paper is organized as follows. Section 2
describes the conventional set-membership filtering (SMF)
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approach. Section 3 discusses the SM-NLMS algorithm

and presents its two kernel versions for nonlinear problems

along with a complexity reduction method. In Section 4,

the kernel SM-NLMS algorithm is applied to two specific

nonlinear problems to assess its performace. Section 5 con-

cludes the paper.

2. SET MEMBERSHIP FILTERING

In set-membership filtering, the objective is to find a set of

feasible filter coefficients such that the resulting estimation

errors are bounded in magnitude over a model space S, that

consists of all the input vector-desired output pairs (x, d),
where x ∈ CN and d is a complex scalar. If θ ∈ CN repre-

sents the linear-in-parameter vector, then the filter output is

given by y(θ) = θTx and the filter error is e(θ) = d− y(θ).
Hence the SMF criterion is to find θ such that

|e(θ)|2 ≤ γ2 ∀(x, d) ∈ S (1)

where γ is an upper bound on the filter error. The SMF

criterion results in a region estimate called the feasibility set
Θ, which is given by

Θ �
⋂

(x,d)∈S
{θ ∈ C

N : |d − θT x|2 ≤ γ2}

Properly chosen error bounds result in a non-empty feasi-
bility set, which is assumed to be so throughout this paper.

The constraint set Hn, for input vector-desired output pairs

(xn, dn) at a time instant n, refers to the set of all parameter

vectors that are consistent with (1), i.e.,

Hn = {θ ∈ C
N : |dn − θT xn| ≤ γ}

The minimal set estimate for Θ at time instant n, referred to

as the exact membership set, is given by ψn = ∩n
i=1Hi. In

the next section, the SM-NLMS algorithm is reviewed and

two kernel versions of the same are presented along with a

complexity reduction method.

3. KERNEL SET MEMBERSHIP ALGORITHMS

This section presents two kernel set membership algorithms

for nonlinear regression and classification. A method to re-
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duce the complexity of kernel SM algorithm solutions is

also discussed.

3.1. Kernel SM-NLMS algorithm

The SM-NLMS algorithm is a supervised learning algo-

rithm, belonging to the set-membership adaptive recursive

techniques (SMART) family [6]. The SM-NLMS is formu-

lated by the following equations [6]:

θ̂n = θ̂n−1 + αnδnx∗
n/xH

n xn (2)

σ2
n = σ2

n−1 − α2
n|δn|2/xH

n xn (3)

where x∗
n and xH

n denote, respectively, the complex conju-

gate and Hermitian of xn. The prediction error δn and the

gain αn are given by

δn = dn − θ̂T
n−1xn = dn − y(xn) (4)

αn =
{

1 − γ/|δn|, if |δn| > γ
0, otherwise.

(5)

Rewriting (2) in nonrecursive form,

θ̂n =
n∑

i=0

αiδix∗
i /x

H
i xi (6)

Thus, for an input test vector x, the filter output is

y(x) =
n∑

i=0

αiδixH
i x/xH

i xi (7)

The kernel SM-NLMS algorithm performs linear regression

in the feature space F of higher dimension (possibly infi-

nite). This is accomplished by a nonlinear transformation

from x ∈ C
N to φ(x) ∈ F . The motive behind this trans-

formation comes from Cover’s theorem on the separability

of patterns [7]. It is clear from (7) that only the inner prod-

uct between the input vectors needs to be computed. Hence,

the inner product can be replaced by the Mercer kernel func-

tion i.e., k(xi,xj) = φ(xi)T φ(xj); see [3] for more details

and choices for the Mercer kernel. Thus, the “kernel” trick

eliminates the need for explicit computation of vectors φ(x)
in the feature space, thereby smartly avoiding the curse of
dimensionality [2]. The filter output is now given by,

y(x) =
n∑

i=0

αiδik(xi,x)/k(xi,xi) =
n∑

i=0

cik(xi,x) (8)

where ci = αiδi/k(xi,xi). Sparsity is introduced in the

solution because αn = 0 when |δ| < γ. Sparsity is desired

since it reduces the test phase complexity. A kernel set-

membership binary classification (SM-BC) algorithm suit-

able for binary classification of nonlinearly separable pat-

terns is presented in the next subsection.

3.2. Kernel SM-BC algorithm
In binary classification, for a given input vector-observation

pair (x,d), it is desired that the classifier output (y(x) =
θT x) satisfies the following conditions: y(x) > 0, if d =
+1; and y(x) < 0, if d = −1. These two conditions to-

gether yield,

dy(x) > 0 (9)

The aim is to obtain an estimate of the optimal classifier

θ that satifies the above inequality for all (x, d) ∈ S. To

achieve better generalization performance, a margin γb is

used as a threshold in the above inequality. Thus,

dy(x) > γb ∀(x, d) ∈ S (10)

As in SM-NLMS algorithm, the parameter estimate is up-

dated selectively, i.e., only when the inequality (10) is not

satisfied. Using the point-wise approach as in [6], the new

estimate is obtained by taking a projection of the old esti-

mate onto the hyperplane represented by dny(xn)−γb = 0.

The recursive updates for the estimate of the classifier is

given by

θ̂n = θ̂n−1 + βnx∗
n/xH

n xn (11)

where the deviation βn is defined as follows:

βn =
{

dnyn − γb if dnyn < γb

0, otherwise.

The classifier output in the nonrecursive form is easily com-

puted using y(x) = θ̂Tx and (11):

y(x) =
n∑

i=0

βixH
i x/xH

i xi (12)

which is of the form similar to (7). To perform classifica-

tion of nonlinearly separable patterns, the kernelized form

of (12) can be used as follows:

y(x) =
n∑

i=0

βik(xi,x)/k(xi,xi) =
n∑

i=0

fik(xi,x) (13)

where fi = βi/k(xi,xi). This algorithm also exhibits the

desirable features of selective update and online adaptation

of classifier estimates. The computational complexity of

both the algorithms in the test phase depends on the number

of updates in the training phase which are equivalent to the

support vectors in SVM. A complexity reduction method

using an online greedy approximation technique proposed

in [8] is discussed in the next subsection.

3.3. Sparse online greedy approximation
Let {x̃j}m

j=1 be the m vectors retained till time instant n
and {c̃j}m

j=1 be their corresponding filter coefficients so that

y(xn) =
∑m

j=1 c̃jk(x̃j ,xn). If (5) yields αn �= 0, the al-

gorithm seeks to find coefficients {an,j}m
j=1 satisfying ap-

proximate linear dependence condition
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∥∥∥
m∑

j=1

an,jφ(x̃j) − φ(xn)
∥∥∥2

≤ ν (14)

where ν ≥ 0. Minimizing the left hand side of (14) helps to

simultaenously check whether the condition is satisfied and

obtain the coefficient vector an = [an,1an,2 · · · an,m]T that

best satisfies it. For numerical stability, an l2-norm regular-

ization term µ‖a‖2 (µ ≥ 0) is added to the left hand side in

(14), resulting in the following minimization problem,

min
an∈Rm

{
aT

n (K̃n + µIm)an − 2aT
n k̃n + knn

}
(15)

where [K̃n]i,j = k(x̃i, x̃j), (k̃n)i = k(x̃i,xn), knn =
k(xn,xn), i, j = 1, 2 · · ·m and Im is an m × m identity

matrix.

Solving (15) yields an = K̂−1
n k̃n, where K̂n = K̃n +µIm,

and the condition (14) becomes,

knn − (k̃n + µan)Tan ≤ ν (16)

If (16) is satisfied, then xn is discarded, K̂n is unaltered and

the filter coefficients c̃i are adjusted as follows,

K̂n+1 = K̂n

c̃i = c̃i + cnan,i i = 1, 2, · · ·m

Otherwise, the algorithm performs the following updates.

c̃m+1 = cn

x̃m+1 = xn

K̂n+1 = [K̂n k̃n; k̃T
n knn + µ]

m = m + 1

Computing the coefficient vector an+1 requires inversion

of K̂n+1 which can be efficiently computed in a recursive

manner using the Sherman-Woodbury formula [9],

K̂−1
n+1 = [P q;qT s]

where P = K̂−1
n + sK̂−1

n k̃nk̃T
n K̂−1

n ,q = −sK̂−1
n k̃n and

s = 1/(knn + µ − k̃T
n K̂−1

n k̃). The sparse greedy approx-

imation can be applied to the kernel SM-BC algorithm as

well, as explained above.

4. APPLICATIONS AND SIMULATION RESULTS

In this section, two specific applications of the algorithms

presented in the previous section are considered.

4.1. Adaptive Equalization of Nonlinear ISI channels

In practice, nonlinear ISI channels could be encountered

in digital satellite communications [10] or digital magnetic

recording [11]. A nonlinear channel with memory is usu-

ally modeled as a linear channel followed by a memory-

less nonlinearity. The linear channel considered here has

an impulse response [1, − 0.5], followed by a memory-

less nonlinearity x + 0.2x2 − 0.9x3, where x is the output

of the linear channel. The transmitter sends binary signals
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Fig. 1. BER performance of proposed algorithms

(±1) with equal probability. The signal at receiver input is

corrupted by additive white gaussian noise (AWGN). The

receiver input samples are grouped to form the input vector

xn = [x(n) x(n − 1) · · · x(n − N + 1)]T and the de-

coded symbol is given by d̂n−D = sign(yn), where D is

the decoding delay. Gaussian Radial Basis Function (RBF)

kernel was used and the value of σRBF was tuned to achieve

good generalization performace through cross validation.

For SVM, the value of C, the regularization parameter was

set using the method given in [12]. For the kernel SM-

NLMS algorithm, the threshold was set to 3γv, where γ2
v is

the variance of the AWGN and γb = 1 for the kernel SM-BC

algorithm. The size of training set is 200 symbols and test

data consists of 106 symbols. The results are averaged over

100 independent trials with N = 3 and D = 1. The bit error

rate (BER) curves show that the proposed algorithms per-

form significantly better than the conventional linear least

squares (LLS) algorithm and comparably with the SVM.

The online greedy approximation method explained in Sec-

tion 3.3 is applied to the Kernel SM-NLMS algorithm with

ν = 0, ν = 0.8 and µ = 0.01. At SNR = 20 dB, the

number of support vectors for SVM was found to be around

33%. The kernel SM-NLMS algorithm with ν = 0 retained

49% of the vectors while the number of retained vectors

with ν = 0.8 was around 22%. The price paid for reduc-

tion in test phase complexity is degradation in performance

as seen in Fig. 1. The curves for kernel SM-NLMS with

ν = 0 and kernel SM-BC are not distinguishable because

they overlap.

4.2. Nonlinear High Power Amplifiers

Bandwith efficient modulation schemes like M-QAM have

large amplitude fluctuations that makes them vulnerable to

HPA nonlinearity, resulting in degraded BER performance

and spectral regrowth that causes adjacent channel interfer-

ence. A good solution is to use a predistorter (PD) that com-
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Fig. 2. Performance of HPA with and without PD

pensates for HPA nonlinearity so that the amplifier can be

operated close to saturation with high power efficiency. The

AM/AM (A(r)) and AM/PM (Φ(r)) characteristics of the

HPA memoryless nonlinearity are modeled using the Saleh

model as in [13]. A(r) and r represent, respectively, the nor-

malized output amplitude and normalized input amplitude

of the HPA; and Φ(r) represents the output phase. The dig-

ital predistorter should have AM/AM (G(·)) and AM/PM

(Ψ(·)) characteristics that satisfy the following equations.

A(G(r)) = k · r
Ψ(r) + Φ(G(r)) = 0

where k is the desired gain of the linearized HPA. The pairs

(A(r)/k, r) and (r, Φ(r)) are used as the input-desired out-

put pairs to train the amplitude and phase PDs, respectively.

Gaussian RBF kernel with σRBF tuned through cross val-

idation is used. In the simulations, a 16-QAM modulation

scheme is used. The baseband symbols are upsampled by

a factor of 8 before being filtered by a square root raised-

cosine (SRRC) filter with a roll-off factor 0.25 and trun-

cated to 10 symbol duration. The sample size of training set

is 100 symbols (800 samples) and that of test set is 106 sym-

bols. The results are averaged over 100 independent trials

with a Peak Back Off (PBO) [14] of 0.22dB. The receiver

uses a SRRC filter to match the transmitter pulse shape. It

is clear from Fig. 2 that, in presence of AWGN, the symbol

error rate (SER) performance of the PD-HPA combination

is very close that of the ideal case of a linear HPA. Also, the

spectral regrowth is considerably reduced as seen in Fig. 3

thereby bringing down the adjacent channel interference.

5. CONCLUSION

A kernelized SM-NLMS algorithm was presented to solve

practical nonlinear problems by implicit transformation of

input vectors onto a feature space. The kernel SM-BC al-

gorithm performs binary classification of nonlinearly sepa-

rable patterns. Both algorithms have attractive features of

selective update and adaptive step size. The test phase com-
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Fig. 3. Spectrum of the HPA output with and without PD

plexity can be reduced by retaining only the support vectors

that are exactly or approximately linearly independent in the

feature space.
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