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ABSTRACT

We propose a new method for adaptively removing noise
and interference from a signal. In this method, isolation
of the signal and interference components is facilitated by
a concentration process applied to the short time Fourier
transform (STFT). Unwanted components are removed from
the concentrated surface, and a clean signal is estimated by
integration. The concentrated STFT is a linear representa-
tion, free of cross terms and having the property that signal
and interference components are easily recognized because
their distributions are more concentrated in time and fre-
quency. We demonstrate the advantages of the proposed
method over conventional methods.

1. INTRODUCTION

A frequently recurring problem in communications is the
need to remove noise and interference from a signal. There
have been many approaches suggested to address this prob-
lem. For stationary narrowband interference, a simple notch
filter may be effective. Adaptive notch filters have been sug-
gested to remove narrowband non-stationary interference
(c.f. [1, 2]). For removal of broadband noise from speech,
Wiener filter techniques, such as spectral subtraction are
frequently used (c.f. [3, 4]).

In adaptive filter implementations, the time-varying in-
stantaneous frequency (IF) of the interfering signal is esti-
mated from a TF distribution, such as aWigner distribution
(c.f. [5, 1]). The interfering signal is then translated to a
constant frequency and removed with a notch filter, and the
resulting clean signal is frequency translated back to base-
band. In this operation, the interference bandwidth and
IF are estimated and the IF must be accurately tracked.
For a single narrowband interfering signal and a wideband
signal of interest, this may not be a problem, but isolating
and tracking the IF in the presence of multiple narrowband
components and cross-terms may be difficult.

In Wiener filtering or spectral subtraction, components
which are dominated by noise are removed from the spec-
trogram, and the clean signal is estimated by a pseudo in-
version process (c.f. [3, 4]). In general, a true inverse of the
modified spectrogram does not exist, so the solution must
be chosen to minimize an error criterion.

We propose a new signal reconstruction method. This
method is based on a recently proposed linear TF paradigm
[6]. In the linear TF distribution paradigm there are two
assumptions: (1) such distributions are linear representa-
tions of the signal; (2) the value of the signal at each time
is distributed in frequency, in the sense that the value of

the signal at each time may be estimated as the integral of
the surface with respect to frequency. This second condi-
tion is a linear time marginal (LTM). Linear distributions
are significantly different from energy distributions. Energy
distributions are not linear. In addition, for energy distribu-
tions, the time marginal condition is the requirement that
integration of the TF surface with respect to frequency re-
sults in the energy density of the signal. Because of linearity
and the LTM, we may remove unwanted components from
linear TF surfaces and recover a signal whose TF represen-
tation is the modified surface.

We present a method for estimating signal components
with narrow FM bandwidth directly from a wideband STFT
representation. In the proposed method, the STFT is mod-
ified, concentrating the components along curves function-
ally representing the instantaneous frequencies of individ-
ual signal components. The concentration process may be
seen to preserve linearity and the LTM property. From
the concentrated STFT, the actual values of an individual
signal component may be estimated by evaluating the con-
centrated STFT along a curve functionally representing the
instantaneous frequency of that component.

We apply our methods to estimate a clean speech sig-
nal from an interference environment. In applying these
methods, speech formants are reduced to narrowband com-
ponents by the concentration process. A clean signal may
then be estimated as the sum of relatively few concentrated
components.

2. THE SIGNAL REPRESENTATION, IF AND STFT

We assume an analytic multi-component signal of the
form s(t) = a(t)eiωt, a(t) ≥ 0. We further assume that the
signal may be decomposed as the sum of signal components

s(t) =
∑
k

sk(t) (1)

sk(t) = ak(t)e
iφk(t) , ak(t) ≥ 0, φk(t) ∈ � (2)

where noise and interference may be represented as one or
more of the signal components. This decomposition is not
assumed to be unique.

2.1. Instantaneous Frequency

While it is not essential, it is useful to consider the indi-
vidual signal components to be narrowband in the sense
that their instantaneous frequencies are slowly varying as
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a function of time. For the signal Eq. (1), the respective
instantaneous frequencies of s(t) and sk(t) are

ωs(t) =
d

dt
arg{s(t)} =

d

dt
φ(t) (3)

ωsk(t) =
d

dt
arg{sk(t)} =

d

dt
φk(t) (4)

2.2. Fourier Transform and STFT

The Fourier transform of a signal, s(t), is defined by

S(ω) =

∫ ∞

−∞
s(t)e−iωtdt. (5)

The complex-valued STFT [7] has the representation

Skh(ω, T ) =

∫ ∞

−∞
sk(t+ T )h(−t)e−iωtdt. (6)

Sh(ω, T ) =

∫ ∞

−∞
s(t+ T )h(−t)e−iωtdt (7)

=
∑
k

Skh(ω, T ), (8)

where Eq. (8) follows from Eq. (1). In the following discus-
sion, we assume for simplicity that the window, h(−t), and
its frequency response, H(ω), are both real and symmetric
and that both have mean zero and small variance.

For a signal component, sk(t), of the form Eq. (2) to
be narrowband, both ak(t) and φk(t) must change slowly
as a function of time. In this case, φk(t) has a power series
expansion φk(t+T ) ≈ φk(T )+ωsk(T )t, and the STFT has
the representation

Skh(ω, T ) ≈ ak(T )

∫ ∞

−∞
eiφk(t+T )h(−t)e−iωtdt (9)

≈ ak(T )e
iφk(T )

∫ ∞

−∞
eiωsk

(T )th(−t)e−iωtdt (10)

= sk(T )H(ω − ωsk(T )). (11)

2.3. The CIF representation

To distinguish the signal instantaneous frequency from the
derivative of the STFT phase with respect to time, we will
use the notation [8, 9]

CIFSh(ω, T ) =
∂

∂T
arg{Sh(ω, T )} (12)

≈ 1

ε
arg{Sh(ω, T +

ε

2
)S∗

h(ω, T − ε

2
)}, (13)

where ε is assumed to be small.

3. ESTIMATING SIGNAL COMPONENTS FROM THE
STFT

We will now demonstrate that signal components may be es-
timated directly from the STFT. To do this, we need to de-
fine the concepts of separability and linear time marginals.

3.1. Separability

We define a TF surface, S(ω, T ) =
∑

Sk(ω, T ), to be
separable (with respect to a given decomposition) at a point,
(ω0, T0), if Sk(ω0, T0) �= 0 for at most one value of k. A sur-
face is approximately separable at (ω0, T0) if for some k

|Sk(ω0, T0)| � |Sl(ω0, T0)| , k �= l. (14)

Separability is a local condition which is either true or
not true at each point on the surface. At a separable
or approximate separable point, (ω0, T0), the component,
sk(t), whose surface magnitude, |Sk(ω0, T0)|, is largest is
defined to be the dominant component. If sk(t) is the
dominant component, at a separable point, (ω0, T0), then
S(ω0, T0) = Sk(ω0, T0). Assuming Eq. 1,2, separability is
the exact condition under which one signal component can
be isolated, and estimated from the surface of the composite
signal.

Since the STFT is linear, separability is the condition
under which the local contribution of a signal component
can be isolated on the STFT surface. By Eq. (11), for
coordinates, (ω, T ), near a separable point, (ω0, T0), the
dominant component, sk, satisfies [9]

CIFSh(ω, T ) ≈ ωsk(T0). (15)

3.2. The Linear Marginals

For energy distributions, the marginal conditions are the
requirement that the integrals of the surface with respect to
time and frequency respectively result in the power spectral
and the signal energy density functions respectively. We
define the linear marginals as

s(T ) =

∫ ∞

−∞
S(ω, T )dω (16)

S(ω) =

∫ ∞

−∞
S(ω, T )e−iωT dT (17)

For the STFT, the linear time marginal is

sh(T ) =

∫ ∞

−∞
Sh(ω, T )e

iωtdω

∣∣∣∣
t=0

(18)

=

∫ ∞

−∞

∫ ∞

−∞
h(−t)s(t+ T )e−iωtdteiωtdω

∣∣∣∣
t=0

(19)

= 2πh(0)s(T ) (20)

3.3. Estimating a “Narrowband� Component

We now combine the LTM and separability properties with
the representation Eq. (11) to estimate the value of a signal
component from the STFT. By Eq. (11) and Eq. (20), we
may estimate the value of a narrowband signal component
at a point T0 as

sk(T0) ≈
∫ ωsk

(T0)+ε

ωsk
(T0)−ε

Sh(ω, T0)dω, (21)

where the magnitude of the error of Eq. (21) is approxi-
mately

2

∣∣∣∣
∫ ∞

ε

H(ω)dω

∣∣∣∣ (22)
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and we have assumed that ωsk(T0) is known. If we evalu-
ate Eq. (21) for each T0, the resulting signal is effectively
the result of applying an adaptive bandpass filter to the
signal, s(t), where the center frequency of the filter at any
time is the instantaneous frequency of the component, sk(t),
and the bandwidth of the filter is 2ε. The adaptive filter,
Eq. (21), can be made to adapt to the instantaneous signal
bandwidth by making ε time dependent.

4. CONCENTRATING THE STFT

The representation, Eq. (11), may be related to the uncer-
tainty principle for the STFT. Assuming a real and sym-
metric window, h(−t), the time uncertainty is essentially
the standard deviation of h(−t). The frequency uncertainty
is the bandwidth of the windowing function. In addition,
there is the uncertainty in the signal, representing the com-
bined AM and FM signal modulation.

Fig. 1. The spectrum of 3 msec of voiced speech. Dashed
line: power spectrum (dB); Solid line: magnitude of con-
centrated spectrum (dB)

We will now use the CIF to concentrate the STFT. In
this concentration process, we effectively remove much of
the STFT and signal uncertainty. For a single component
with slowly varying amplitude and instantaneous frequency,
this concentration process will result in a surface whose en-
ergy is narrowly concentrated along a curve functionally
representing the IF of the signal component. The concen-
tration process may create a narrowband representations of
signal components whose spectral bandwidths are broad.

Fig. 2. A comparison (Solid line: STFT; Dashed line:
weighted concentrated STFT) of the attenuation of the si-
nusoidal FM interference of Fig. 3 as a function of percent-
age of the TF surface lost.

First computeCIFSh(ω, T ). By Eq. (15), CIFSh(ω0, T0)
represents an estimate of the IF of the dominant signal com-
ponent at separable point, (ω0, T0). We reassign the STFT

component, Sh(ω0, T0) to the coordinate, (CIFSh(ω0, T0), T0).
In this process, the values of all STFT components mapped
to (Ω0, T0) are accumulated and assigned to that coordi-
nate 1. We denote by SCIF(ω, T ) the concentrated STFT in
which each surface component has been assigned to its new
frequency. We have dropped the dependence on h from
the notation, since concentration effectively mitigates the
effect of the windowing function, as may be seen in Fig. 1.
Since we have assumed that h(t) and H(ω) are both real
with mean zero and small variance, we may assume that
the concentrated STFT preserves phase and timing of the
dominant signal component at each separable point. In the
concentration process, at each time, T0, most of contribu-
tion of each signal component may be concentrated to a
very narrow frequency band.

Fig. 3. TF representations of signal before removing in-
terference. Displays represent one second of data com-
puted with a 3 msec Hanning window. a: Spectrogram
of speech and interference (dB); b: Concentrated STFT
(dB) of speech and interference; c: Concentrated STFT of
clean speech (dB); d: Locus of strongest peak of Fig.3c; e:
Concentrated STFT (dB) of speech with concentrated in-
terference removed; e: Locus of the strongest peak of con-
centrated STFT with interference removed

We now apply frequency smoothing to the concentrated
STFT at each time

S̃CIF(ω, T ) = SCIF(ω, T ) ◦ω W (ω), (23)

where ◦ω represents convolution with respect to ω andW (ω)
is a smoothing window. We may estimate the value at time,

1For a similar process applied to the spectrogram, c.f [9]-[11].
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T0, of individual signal components by evaluating the “spec-

trum�, S̃CIF(ω, T0), at values of ω for which the magnitude

of S̃CIF(ω, T0) is relatively maximized.
We may estimate the analytic signal at time, T0, as the

sum of the complex-valued “peaks� of S̃CIF(ω, T0). A real
signal is then computed as the real part of the resulting
sum. Narrowband interference may be removed by exclud-
ing interference peaks from the sum, and since noise has
random phase, noise contributes little to the peak values.

In the concentration process wideband signal compo-
nents may be reduced to a narrowband representation. The
bandwidth compression of signal components may be con-
siderable. In Fig. 2, we represent the signal energy (dB)as
a function of bandwidth of the sinusoidal interference rep-
resented in Fig. 3. Displayed are the distributions for the
un-modified STFT and the concentrated STFT. The band-
width reduction of the component is significant. At the
20 dB energy threshold, the STFT bandwidth is 16% of
the total spectrum. For the concentrated STFT, the corre-
sponding bandwidth is 3%.

5. SIGNAL ESTIMATION AND REMOVAL OF
INTERFERENCE AND NOISE

In testing the method, We selected files from the TIMIT

database [12]. In each case, S̃CIF(ω, T ) was computed using
a 3 msec Hanning window. For each T0, the 5 components
with the largest peak magnitude were selected and summed
to approximate the analytic signal. An audio signal was
constructed as the real part of the analytic signal. The
signal constructed in this manner was nearly distortion free.

Next, as indicated in Fig. 3, a sinusoidally FM mod-
ulated signal was added to the speech, and the surface,

S̃CIF(ω, T ), was computed as before. The 5 strongest peak
components at each time were computed as before. Since
the interference was much stronger than the speech signal,
the interference component was removed by discarding the
strongest peak component, and the clean signal was esti-
mated as the sum of the remaining 4 components. The re-
sulting signal was nearly clean speech, with some distortion
noted when speech components could not be distinguished
from the interference component on the TF surface.

As a final test, a signal representing only the single

strongest peak value of S̃CIF(ω, T0) at each time was com-
puted from the clean signal. This single component was
completely intelligible and undistorted. The fact that it re-
sulted in clean speech is quite amazing. For voiced speech,
this component generally represented the first formant, and
for unvoiced speech, this component generally represented
the frequency at which frication “energy� was concentrated,
as represented in Fig. 3.

6. CONCLUSIONS

We have presented a new complex-valued linear TF repre-
sentation in which multi-component signals, such as speech
may be represented as a sparse sum of narrowband compo-
nents. We have demonstrated that this representation may
be easily estimated from the STFT by a simple concentra-
tion process. This representation may be used to remove

non-stationary interference and in data compression.
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