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ABSTRACT

We demonstrate an efficient inverse scattering algorithm for recon-
structing the coupling profiles or reflection coefficients of a dis-
crete layered medium. The method, called the Schur algorithm
combined with an extrapolation method, is based on solving the
coupled-mode differential equation in a layer-peeling procedure
with a simple extrapolation scheme. In order to reduce the estima-
tion errors caused by discretization of an inhomogeneous medium,
we analyze the error propagation of inverse scattering with the
Schur algorithm (layer-peeling method) and propose the extrap-
olation scheme. Numerical examples are provided that compare
the Schur algorithm combined with an extrapolation method to
the general Schur algorithm in a coarse discretization environment.
The comparison shows that the proposed method produces a more
accurate reconstruction with a lower order of complexity.

1. INTRODUCTION

The Schur algorithm (layer-peeling method) for inverse scattering
problems is an efficient method to identify the coupling profiles
of a layered wave propagation medium such as transmission-lines,
earth, vocal tract, and fiber Bragg gratings [1,2,3].

When scattering data are contaminated by noise, stochastic
signal processing techniques have been applied [4,5]. Iterative
layer-peeling [6] has also been reported that adaptively reconstructs
the input waveforms to reduce errors. These methods are related to
eliminate the errors caused by noise with a fine discretization. On
the other hand, our algorithm eliminates errors caused by coarse
discretizaion of the medium. In general, to achieve a precise ap-
proximation using the Schur algorithm, we usually wish to have
fine discretization, which in turn results in a large memory size and
is a time consuming operation. In a coarse discretization environ-
ment, the Schur algorithm will return inaccurate results. The main
source of the inaccuracy with a noise free assumption is global
discretization errors that accumulate during the peeling process.
In order to eliminate global discretization errors, we introduce the
Schur algorithm combined with an extrapolation method, which
produces a high order approximation with a minimal computa-
tional cost in a coarse discretization environment.

In order to apply an extrapolation scheme to a Schur algo-
rithm, we first analyze the global discretization error propagation
of the Schur algorithm analytically and show the upper-bound.
Then, based on the error analysis, we obtain the asymptotic ex-
pansion that reveals the global discretization error of approximated

coupling profiles as a polynomial of infinite degree with a dis-
cretizing step size of h. The extrapolation scheme that cancells
global discretization errors through the layers is determined from
the asymptotic expansion. Numerical simulations and a complex-
ity analysis show that a high degree of accuracy is achieved for
the proposed method with a notably lower complexity than for
the general Schur algorithm. This efficient inverse scattering al-
gorithm can be applied to identification for scattering media such
as the estimation of transmission line parameters, nondestructive
testing, vocal tract modelling, and fiber Bragg grating filter syn-
thesis.

2. INVERSE SCATTERING WITH SCHUR ALGORITHM

Let x be a spatial variable and t be time. Scattering media are
described by a two-component wave system coupled mode differ-
ential equation [1]

d
dx

[
wR(t, x)
wL(t, x)

]
=

[ − d
dt

−q(x)
−q(x) d

dt

] [
wR(t, x)
wL(t, x)

]
(1)

where wR(t, x) and wL(t, x) are the right and left propagating
wave, and q(x) is the coupling function. Inverse scattering identi-
fies the coupling function q(x), which characterizes the scattering
medium.

Consider a discrete layered medium that is composed of N
uniform loss-less layered sections with the assumption that the
medium was initially quiescent. Discretization is performed in
such a way that the travel time for propagating waves from one
end of each section to the other end of the section is a unit time of
h. After straightforward discretization of (1), the recurrent relation
for the propagating waves becomes, for i = 0, 1, . . . , N − 1 [1],[
wR(t, xi+1)
wL(t, xi+1)

]
= 1

πi

[
z− 1

2 0

0 z
1
2

][
1 −hq(xi)

−hq(xi) 1

][
wR(t, xi)
wL(t, xi)

]
(2)

, where z− 1
2 and z

1
2 are the unit time-delay and the unit time-

advance operators defined by z− 1
2 w(t, xi) = w(t − h, xi) and

z
1
2 w(t, xi) = w(t + h, xi) respectively, and the transmission co-

efficient πi is defined by
√

1−(hq(xi))2. We now let t = τ and
2h ≡ ∆, where τ indicates the time of the first appearing right
propagating wave as the input to the i-th section, and ∆ represents
the time in which the injected wave from the i-th section to the
i + 1-th section is reflected after undergoing scattering. The cou-
pling or reflection coefficient at x = xi is computed as the ratio
of the first impinging wave wR(τ, xi) and the first reflected wave
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wL(τ, xi), hq(xi) = wL(τ, xi)/wR(τ, xi)[1]. This interpreta-
tion is based on the causality principle, which states that the front
edge of the impulse response of a medium is proportional to the
coupling profile at the begging of the i-th section [1]. The recon-
structed coupling coefficient of the i-th section is used to find the
coupling coefficient of the i + 1-th section using a direct solution
to the coupled-mode differential equation (2). Thus, the coupling
coefficient of the i + 1-th section becomes

hq(xi+1)=
wL(τ+∆

2
,xi+1)

wR(τ+∆
2

,xi+1)
=wL(τ+∆,xi)−hq(xi)wR(τ+∆,xi)

wR(τ,xi)−hq(xi)wL(τ,xi)
(3)

The set of equations (2) and (3) for i = 0, 1, . . . , N −1 represents
the Schur algorithm (layer-peeling method) for inverse scattering
[1,2]. We designate (3), the recursion formula for the coupling
coefficient, as the Schur recursion formula.

3. SCHUR AND EXACT RECURSION FORMULAE

Assuming that wR(t, x), wL(t, x) and q(x) are continuous and
differentiable function that satisfy the Lipschitz condition [7] for
x ≥ 0 and t ≥ 0, we define the derivatives for wR(t, x) and
wL(t, x) based on (1)

(wR(t, x))(k) ≡ ( ∂
∂x

+ ∂
∂t

)kwR(t, x)

(wL(t, x))(k) ≡ ( ∂
∂x

− ∂
∂t

)kwL(t, x)

, for k = 1, 2, . . . . Specifically, (wR(t, x))(1) = −q(x)wL(t, x)

and (wL(t, x))(1) = −q(x)wR(t, x). Now, we assume that the
scattering data at x = xi are exact and our concern now shift to
computing the coupling coefficient at x = xi+1. Our goal is to
derive an appropriate series expansion for the Schur recursion for-
mula in order to analyze the error behavior of the Schur algorithm.

The nominator of the Schur recursion formula (3) can be inter-
preted as the first order Taylor series for wL(τ + ∆

2
, xi +h) about

τ + ∆ and xi. The denominator can also be interpreted as the first
order Taylor series for wR(τ + ∆

2
, xi + h) about τ and xi, which

yields
wL(τ+∆

2
,xi+1)

wR(τ+∆
2

,xi+1)
=

wL(t+∆,x)+h( ∂
∂x

− ∂
∂t

)wL(t+∆,x)

wR(t,x)+h( ∂
∂x

+ ∂
∂t

)wR(t,x)
|t=τ,x=xi . (4)

The formula hq(xi) = wL(τ, xi)/wR(τ, xi), computing the cou-
pling coefficient at x = xi, can also be interpreted as the first order
Taylor series for wL(τ − ∆

2
, xi+1) about τ and xi, which leads to

wL(τ−∆
2

, xi+1) = wL(τ, xi)+h( ∂
∂x

− ∂
∂t

)wL(t, x)|t=τ,x=xi =

0, where wL(τ − ∆
2

, xi+1) = 0 is based on the causal prop-
agation of the wave in the medium. Since ( ∂

∂x
− ∂

∂t
)wL(t, x),

as shown in (1), equals −q(x)wR(t, x), we obtain the relation of
hq(xi) = wL(τ, xi)/wR(τ, xi).

In order to analyze (4), we develop an expression for the r.h.s.
of (4) in terms of wR(t, x) and wL(t, x). We suppose the partial
Taylor series expansion of wL(t + ∆, x) about t

wL(t + ∆, x)=wL(t, x)+
∑∞

k=1
(2h)k

k!
( ∂

∂t
)kwL(t, x). (5)

Then we substitute (5) into the r.h.s. of (4) and expand the Schur
recursion formula (4) to a series form by long division. Then, (4)
leads to the relation

hq(xi+1)=hq(xi)+
∑∞

k=1
hk

k!

∑k

m=0
k!
m!

(−(wR(t,x))(1)

wR(t,x)

)k−m

×Lm
m−1

wL(t,x)
wR(t,x)

|t=τ,x=xi (6)

where the coupling coefficient computed by the Schur algorithm is
iterated. The differential operator Lm

m−1 which operates on wL(t, x)

is defined by Lm
m−1≡

∑m
j=m−1 Cm

j

(
∂

∂x
− ∂

∂t

)m−j(
2 ∂

∂t

)j
, where Lm

m−1=

1 when m ≤ 0 and Cm
j = m!

(m−j)!j!
.

In principle, if we are able to analyze the Schur algorithm us-
ing the first order Taylor series expansion, we can obtain the exact
or true recursion formula from an infinite order Taylor series ex-
pansion. We define the exact coupling function by q̂(x) and the
exact scattering data at x ≥ xi+1 by ŵ(t, x). The exact cou-
pling function multiplied by h at x = xi, hq̂(xi) is determined
by the causal propagation of the wave with the infinite order Tay-
lor series expansion for ŵL(τ − ∆

2
, xi+1) about τ and xi, which

yields ŵL(τ − ∆
2

, xi+1) = 0 = wL(t, x) + h(wL(t, x))(1) +∑∞
n=2

hn

n!
(wL(t, x))(n). Thus, we obtain

hq̂(xi) =
wL(t,x)+

∑
∞

n=2
hn

n!

(
wL(t,x)

)(n)

wR(t,x)
|t=τ,x=xi≡wL(τ,xi)

wR(τ,xi)
. (7)

The exact coupling function multiplied by h at x = xi+1 equals

hq̂(xi+1)=
ŵL(t+∆

2
,x+h)+

∑
∞

n=2
hn

n!

(
ŵL(t+∆

2
,x+h)

)(n)

ŵR(t+∆
2

,x+h)
|t=τ,x=xi .

(8)
We express the r.h.s. of (8) in terms of wR(t, x) and wL(t, x) us-
ing an infinite order Taylor series expansion, and expand the r.h.s.
to a series form by applying long division, leading to

hq̂(xi+1)=hq̂(xi)+
∑∞

k=1
hk

k!

∑k

m=0
k!
m!

(−(wR(t,x))(1)

wR(t,x)

)k−m

×Lm
m−1

wL(t,x)
wR(t,x)

+
∑∞

l=2
hl

l!
Φl−1(t, x)|t=τ,x=xi (9)

, where Φl−1 is a function of wL(t, x)/wR(t, x). The explicit
functional form of Φl−1 need not be calculated to derive the asymp-
totic expansion [8].

Since the determined input and measured output data at the
surface of the medium, in practice, are the only exact scattering
data that the Schur algorithm starts with, the assumption that the
scattering data at x = xi are exact is changed to the assumption
that the scattering data at x = 0 are exact. Therefore, the recon-
structing coupling profile using the Schur algorithm is generalized
as an initial value problem. To illustrate the initial value prob-
lem conjugated with the extrapolation method, we assume that a
fixed step size of hc, where hc represents the coarse discretiza-
tion step size, and the subdivided step size h = hj = hc/gj for
j = 0, 1, . . . , where gj is defined as 2j , which denotes the sub-
division. The relation gj = 2j permits the extrapolation method
to proceed at a minimal computational cost [7]. We write the ap-
proximated hc-step coupling coefficient for the Schur algorithm
as hcqi. We also write the multi-step coupling coefficient, hj-step

coupling coefficients, as hc

2j
q<2j>

i , where the superscript on the
coupling function denotes the subdivision.

In order to derive an asymptotic expansion in an easy to follow
manner, the normalized Schur recursion formula can be obtained
by dividing the h = hj by both sides of (6). Then, we define the
initial value problem for the normalized Schur recursion formula
as

qi+1 =qi+hΘ
( wt

L,x

hwt
R,x

,wt
R,x; h

)|t=τ,x=xi , q0 =0 (10)

Θ(
wt

L,x

hwt
R,x

, wt
R,x; h) ≡ ∑∞

k=1 θk(
wt

L,x

hwt
R,x

, wt
R,x; h) (11)

θk(
wt

L,x

hwt
R,x

, wt
R,x; h) ≡ hk−1

k!

∑k

m=0
k!
m!

(−(wt
R,x)(1)

wt
R,x

)k−m

×Lm
m−1

wt
L,x

hwt
R,x

(12)

where wt
L,x and wt

R,x are approximated scattering data for the
Schur algorithm. Using the same approach, the initial problem
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for the normalized exact recursion formula can be represented as

q̂(xi+1) = q̂(xi) + hΘ
(

wL(t,x)
hŵR(t,x)

, ŵR(t, x); h
)

(13)

+h2

2!
Φ̂1(t, x) + O(h3)|t=τ,x=xi , q̂(0) = 0

where Φ̂(t, x) is a function of wL(t,x)
hŵR(t,x)

. The normalized exact re-

cursion formula (13) suggests that the coefficients of the hk degree
term for k = 1, 2, . . . are composed of true values, which implies
that the coefficients of hk degree term are independent of the step
size h = hj .

4. ERROR ANALYSIS AND ASYMPTOTIC EXPANSION

The error bound for the normalized Schur recursion formula is ob-
tained by comparing (10) and (13). The goal is to derive an error
bound in the form

qi = q̂(xi) + hru(τ, xi) + O(hp) (14)

where r < p and u(τ, xi) are independent of the step size h. First,
we define the error terms by ei+1 ≡ qi+1 − q̂(xi+1) and ei ≡
qi − q̂(xi). Subtracting (13) from (10) yields

ei+1= ei+h
[
Θ

( wt
L,x

hwt
R,x

, wt
R,x; h

)−Θ
(

wL(t,x)
hŵR(t,x)

, ŵR(t, x); h
)]

︸ ︷︷ ︸
=(∗)

−h2

2!
Φ̂1(t, x) + O(h3)|t=τ,x=xi . (15)

Defining (∗) as the derivative about wL(t,x)
hŵR(t,x)

reduces the (∗) in
(15) to s single differential equation [8]

(∗) =
[

∂θ1

(
wL(t,x)

hŵR(t,x)
,ŵR(t,x);h

)
∂

wL(t,x)

hŵR(t,x)

|t=τ,x=xi

]
ei + O(e2

i ). (16)

Now, we define u(t, x) by the partial differential equation

u′(t, x)≡ ∂θ1

(
wL(t,x)

hŵR(t,x)
,ŵR(t,x);h

)
∂

wL(t,x)

hŵR(t,x)

u(t, x) − 1
2!

Φ̂1(t, x) (17)

with the initial condition u(0, 0) = 0. Then, u(τ + ∆
2

, xi+1) can
be expanded as below

u(τ + ∆
2

, xi + h)=u(τ, xi) + hu′(t, x) + O(h2) |t=τ,x=xi . (18)

Subtracting h×(18) from (15) and letting ei+1−hu(τ+∆
2

, xi+1) ≡
wi+1 and ei − hu(τ, xi) ≡ wi produces

wi+1 = wi + h
∂θ1

(
wL(t,x)

hŵR(t,x)
,ŵR(t,x);h

)
∂

wL(t,x)

hŵR(t,x)︸ ︷︷ ︸
=(∗∗)

wi + O(h3). (19)

Assuming that |(∗∗)| ≤ M , (19) yields

|wi+1| ≤ (1 + hM)|wi| + O(h3), w0 = 0. (20)

Increasing the index i from i = 0 to i = N − 1 conjugated with
(20), produces the recursion result in the inequality

|wN | ≤ exp(hMN)−1
hM

O(h3) = exp(hMN)−1
M

O(h2). (21)

Since exp(hMN)−1
M

is completely independent of h, the global dis-
cretization error is bounded as

eN (= qN − q̂(xN )) = hu(N
∆

2
, xN ) + O(h2). (22)

If the procedure described above is applied recursively, the asymp-
totic expansion can be obtained in the form

q̂(xi) = qi + hu1(i
∆
2

, xi) + h2u2(i
∆
2

, xi) + . . . . (23)

where the values uk(i∆
2

, xi) for k = 1, 2, . . . are independent of
the step size h, and uk(i∆

2
, xi) need not be calculated to apply the

extrapolation method [8].

5. EXTRAPOLATION SCHEME

The hc-step coupling coefficients hcqi, for i = 0, 1, . . . , Nc can
be computed by the Schur algorithm from the known input and
measured scattering data, where Nc is the number of discretized
layers in a coarse step size of hc. In the same manner the hc

2j -

step coupling coefficients hc

2j q<2j>
i for i = 0, 1, . . . , 2jNc can be

computed. Since we know the asymptotic expansion of the com-
puted coupling functions (23), we are able to cancel the global
discretization errors at points x = 0, hc, 2hc, . . . Nchc. Let the
smallest subdivided step size be hc

2σ . In the case of σ = 2 (2-stage
extrapolation) we put this extrapolation scheme in order in tabular
form [7].

y1,1 = qi

y1,2 = q<21>
i y2,1 =y1,2+

y1,2−y1,1

2−1

y1,22 = q<22>
i y2,2 =y1,22 +

y
1,22

−y1,2

2−1
y3,1 = y2,2 +

y2,2−y2,1

22−1

The first subscript of y indicates the column of the tabular form and
the second subscript indicates the subdivisions. In the second and
third columns the global discretization errors of order h and h2 are
cancelled. Therefore, the y3,1 can be represented as

q̂(xi) = y3,1 + O(h3
c) (24)

where y3,1 has the global disretization error order of O(h3
c).

6. NUMERICAL SIMULATION AND COMPLEXITY
ANALYSIS

We now demonstrate the use of the Schur algorithm combined with
an extrapolation method for reconstructing the coupling function
of an inhomogeneous medium for 0 ≤ x ≤ 2.25. In order to gen-
erate scattering data by computer simulation, we directly solve (1)
with a fine discretization step size of 10−5 using Euler’s method
[7] given the exact coupling profile of q̂(x). Thus, the generated
scattering data have a global discretization error order of O(10−5)
[7].

Fig. 1 (dots) shows qi values reconstructed directly from the
computer-generated scattering data by the Schur algorithm with
hc = 0.1, which is very coarse discretization compared to the
length of the inhomogeneous medium. The results exhibit a large
discretization error propagation. This error propagation can be
compensated for using the proposed method where we apply a
3-stage extrapolation. The results shown in Fig.1 (x symbols)
demonstrate that an excellent reconstruction is obtained using the
proposed method. Fig.2 shows the relative errors of the Schur al-
gorithm (dots) and the proposed method (x symbols) computed
by log10

|q̂(xi)−qi|
|q̂(xi)|

and log10
|q̂(xi)−qi,extra|

|q̂(xi)|
respectively, where

qi,extra denotes the approximated coupling function of the pro-
posed method. Roughly speaking, a 3-stage extrapolation can com-
pensate for the global discretization error to 4 significant digits
(Fig.2). Therefore, the approximated coupling function can be ex-
pressed as q̂(xi) = qi,extra + O(h4

c), just as we expected, which

means that log10
|q̂(xi)−qi,extra|

|q̂(xi)|
≤ −4. In order to reveal approx-

imately similar accuracy of the proposed method using the Schur
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algorithm, the medium should be discretized with a step size of
hc/1000 = 10−4 so that the reconstruction has a discretization
error order of O(10−4). The + symbols in Fig.2 represents the
relative error of the Schur algorithm with a step size of hc/1000,
though they are less inaccurate than the proposed method. This rel-
ative error is computed using log10

|q̂(xi)−qi,1000|

|q̂(xi)|
, where qi,1000

indicates the coupling function reconstructed by the Schur algo-
rithm with a step size of hc/1000.

As for computational complexity, we neglect the addition and
the shifting(delay, advance) operations, which are performed quickly
compared to multiplications. For a Schur algorithm with Nc lay-
ers, the total number of multiplications equals 2N2

c + 22Nc [2].
For a 3-stage extrapolation, the complexities for calculating the
hc

2
, hc

22 , and hc

23 -step coupling functions are 23N2
c +23Nc, 25N2

c +

24Nc and 27N2
c + 25Nc respectively. Nc × 3! additional multi-

plications are required for a 3-stage extrapolation. Therefore, the
total complexity equals 170N2

c + 66Nc. In the case of the + sym-
bols in Fig.2, the computational complexity equals 2·106N2

c +22 ·
103Nc. Compared to the proposed method, 2·106N2

c +22 ·103Nc

is a notably large computational cost. In general, the Schur al-
gorithm combined with an σ-stage extrapolation method requires
2
3
(22(σ+1) − 1)N2

c + (22(2σ+1 − 1) + σ!)Nc multiplications.
For the general Schur algorithm, which results in an similar accu-
racy as a σ-stage extrapolation, the complexity is 2

(
1

hc

)2σ
N2

c +

22
(

1
hc

)σ
Nc. We recognize that the coefficients of the N2

c and Nc

degree terms in complexity of the general Schur algorithm are de-
pendent on σ and 1

hc
, where, in general, the value of 1

hc
is large

one. If we increase the extrapolation stage to get more accurate
result, the complexity of the general Schur algorithm, which re-
sults in an similar accuracy as the proposed method, is dramati-
cally increased. Therefore, the proposed method is more efficient
in complexity than general Schur algorithm.

A high degree of accuracy with a lower computational cost is
obtained for the Schur algorithm combined with an extrapolation
method, as demonstrated in this simulation study.
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Fig. 1. Reconstruction results for Schur algorithm and proposed
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