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ABSTRACT

Pixel misalignments such as two-dimensional lateral 

shifts, rotation and magnification are one of the common

sources of distortion in optical data storage systems like

volume holographic memories. In this paper we formulate

the channel model for rotational misalignment of the

detector grid array with respect to the transmitter, about 

the center of the optical axis and derive an expression for 

the number of transmitted bits that can be recovered

losslessly. Finally we outline an algorithm for recovering

the transmitted bits from the detector array in the presence

of additive white Gaussian noise and rotational

misalignment. The method is applicable to holographic

memories and other imaging systems.

1. INTRODUCTION

The advent of optical data storage systems like 

holographic memories [4] for high-density volumetric

storage and fast page-oriented data access has evoked 

interest in constrained coding and signal processing for

recording and reading two-dimensional data. Two-

dimensional coded modulation schemes and improved

signal processing techniques for handling noise and inter

pixel interference can greatly enhance the data storage 

density in such optical memories.

The detection and imaging process in most systems is

not perfect. The inherent effects of band-limiting aperture,

diffraction, misfocus and optical aberrations [4] lead to

inter-pixel interference. Further, effects such as 

mechanical motion of optical components and defects in

optical imaging have a serious impact leading to shifts in

the detector pixel with respect to the intended transmitted

pixel. Thus we need signal processing algorithms to

remove the residual energy from unintended pixels and 

recover the transmitted data.

There are signal-processing algorithms [3], [5] for 

reducing inter-pixel interference, for correcting pixel blurs

and for recovering the signal from a combination of 

known pixel patterns. However there are very few 

algorithms [1], [2], [5] which correct pixel shifts. Burr

developed signal reconstruction algorithms [1], [2] for

compensating fractional lateral shifts that are constant in

two dimensions. Rotational misalignments lead to

fractional shifts that are not constant over pixels. In other

words, pixels that are farther away from the center suffer

more severe distortion than those at the center.  Our work 

in this paper is motivated to extend the idea of handling

fractional shifts for rotational distortion. Our algorithm is

in general applicable for rotationally misaligned systems

with square apertures and for holographic systems with

low fill factors in the transmitter and detector arrays.

The paper is organized as follows. In Section 2, we

formulate the channel model with rotational misalignment

and derive an expression for the number of transmitted

bits that can be recovered losslessly. In Section 3 we

outline an algorithm for recovering bits due to rotational

misalignment in the presence of detector noise and present

simulation results to evaluate the performance of the

algorithm. Finally we conclude in Section 4. 

2. CHANNEL MODEL WITH ROTATIONAL 

MISALIGNMENT

We will briefly review the 4-F optical system [1] that

forms the basis of the channel model. The system consists

of two identical lenses separated by the sum of their focal

lengths. A square aperture of dimensions  is placed in 

the common focal plane of the two lenses. The input

transmitter array is a spatial light modulator (SLM) and is

assumed identical in dimensions to the output detector

array, which is typically a charge-coupled device (CCD).

2D

The spatial sampling rate is determined by the

spacing of the pixels in the SLM and we assume this to be

identical to the aperture width . The pixel-spread 

function is the convolution of the space-invariant impulse

response (due to the aperture) with the original pixel

shape. The space-invariant impulse response is 

determined by the continuous space Fourier transform of 

the aperture shape. With a square aperture, the impulse

D
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response is a 2-D separable sinc function in the x-y plane

given by,
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Figure 1: Rotational Misalignment of the 

SLM array with respect to the detector
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where, is the SLM fill factor where most of the

intensity is captured, the variables  and  are in 

the units of the pixel dimensions and the normalizing

constant  is chosen so that .
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We note that  when evaluated at the center of

the SLM pixel and is oscillatory decaying along both the 

axes.
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Figure 1 shows the schematic of a rotationally

misaligned SLM array with respect to the detector about

the optical axis. The angle of rotation

Figure 1 shows the schematic of a rotationally

misaligned SLM array with respect to the detector about

the optical axis. The angle of rotation  is positive in the

clockwise direction. The coordinates of the SLM with

respect to the detector can be obtained by the rotational

transform R  given by,

cossin
sincos

R (2)

The received signal at the detector pixel  is 

given by,

),( nmd

CCD

CCD

CCD

CCD ii

inim

g

g

g

g nm

ii dxdynmtyxgnmd

5.0

5.0

5.0

5.0

2

,

,,),( ,  (3) 

where,  is the CCD fill factor where the most of the

intensity at the detector pixel is captured. The term

 denotes the binary signal from the SLM pixel

with discrete index that overlaps with the detector 

pixel with discrete index . We note that for small

angles

CCDg

ii nmt ,

ii nm ,

nm,

, the indices  of the SLM pixels

contributing to the cross talk terms in the detected signal

 are due to

ii nm ,
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2,

and its three neighbors on the left, bottom and left-

diagonal. Referring to Figure 1, let us fix the origin as the

center of the grid array. The signal at the detector pixel

with right top corner coordinates  is indexed as 1 2,1d

and has energy mainly contributed by the SLM pixels
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The kernel in (3) is the rotated version of

the function  and is given by,
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where, tR5.00 . Also 1R  since R  is 

orthonormal.

Figure 2 shows the sketch of the kernel centered at 

the point . We can imagine a tiling of such

kernels at the center of each SLM pixel. These kernels 

low pass filter the transmitted signal causing pixel blur.

The effect of rotation causes non-uniform inter-pixel

interference at the intended detector pixel.
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Figure 2: Schematic of the rotated two-

dimensional kernel ),( yxg

The goal of the problem is to recover the transmitted bits

from the detected signal .), nm

Without any loss of generality, assume that the detector

grid array and the SLM array are of size mm 22  and 

each square is of unit area.  Without any coding, every 

element of this uniformly spaced grid array is an equally

likely binary symbol. Without any misalignment,

information bits can be stored. Let and  denote the

areas of the transmitted and the detected arrays

respectively. As a result of rotational misalignment, the

number of bits lost is given the fraction of the area that

does not overlap between the transmitted and detected

arrays. This fact can be interpreted that the portion of the

channel not containing  is lost due to

misalignment. Thus the number of transmitted bits lost is

given by,

24m

tA

d

dA

t AA

t                  (5)

From simple coordinate geometry, we can compute

the overlapping areas of the detected and SLM arrays and 

obtain an upper bound on the number of transmitted bits 

that can be recovered losslessly. The result is stated in

Fact 1 and we avoid the derivations for the sake of

brevity.
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Fact 1:  For  equally likely binary bits of

transmitted signal, at most  bits can be

recovered from rotational misalignment. The parameter

is given by,

mm 22

lossTm 14 2

lossT

In order to facilitate a recursion, we need to initialize

the SLM pixels in the boundary layers to zero. To 

determine the number of such layers that are initialized to

zero, we compute the coordinates of the SLM array that 

just exceeds the range of the detector array. Consider the 

column of pixels at the right most ends. The coordinate of

their right top corner T
ym, after rotational transform is 

obtained as T
ymm cossincos

m

y ,sin

y

. The point

where is the ordinate  exceeds is given by,

tansintancos1
coscotsincot1
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We note that the loss function T is periodic withloss

2 and the maximum loss is around 0.18 bits per pixel

and occurs at angle 4n . Figure 3 shows a plot of 

the loss function for 20 .

mym cossin   (7) 

From (7) we infer that we need to set the top

cossin1m  layer of SLM pixels to zero. Similarly

by symmetry we set the bottom, left and right most

cossin1m  layer of SLM pixels to zero.
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Figure 3: Loss as a function of 

the angle of rotation

Before beginning with the algorithm, we need to first

estimate the angle of rotation. By sending a known 

preamble of pixel pattern and measuring the detected

signal at a predesignated location we can estimate the

angle of rotation. This measurement is used subsequently

in the reconstruction algorithm. As an illustration,

consider Figure 1. By presetting the transmitted SLM 

array as an all zero pattern except at location  and by

measuring the detected signals , we can 

estimate the angle of rotation. 

)1,1(t

)1,1(),2,1( ddHowever in the presence of noise, the transmitted

pixels can suffer errors. In such cases we can model the 

channel as a binary symmetric channel with capacity

. The number of bits that can be recovered losslessly

is now at most .  It must be noted that

the number of transmitted bits lost due to misalignment is 

not significant for small angles. However the inter-pixel

interference with additive noise makes the problem

difficult for signal recovery.

BSCC

BSCloss CTm 14 2

We assume that the SLM and CCD fill factors are

low [3] so that we can get rid of the integrals in equations

(1) and (3). The integrands will be evaluated at the center

of the detector pixel. We can take the square root of the

detected signal and do linear processing [3] for signal

recovery. With the above framework, we will now outline

an algorithm for signal recovery.

The recovery process is done in two blocks. The first

block comprises of all the detector pixels towards the right

half plane of the detector array. The second block consists

of all pixels in the left half plane.

3. ALGORITHM FOR SIGNAL RECOVERY 

We will now consider the problem of recovering the input

pixels from the detected pixels. We consider small angles

of rotational misalignment i.e., less than around 3 degrees 

from a practical perspective. Large angles of rotation can

always be compensated by carefully aligning the parts till 

the point where it is difficult to fine-tune the angle

alignment.  Without loss of generality, we assume the

detector array to be a square grid of size mm 22 . We

define a coordinate system of the detector array as

follows. The coordinate of the center of the grid array is 

designated as the origin . The index for a detector

pixel is identified by the coordinate of its right top corner.

)0,0(

For the first block, detector pixels are sequentially

scanned starting from the top most row until all the

transmitted SLM bits are sequentially decoded from right

to left along this row. The scanner moves to the next row 

and repeats the process of decoding all the row bits before

starting the next row. This process iterates until all the bits

in the first block are decoded. The idea is illustrated in

Figure 4.  For the second block the scanner starts from the

bottom most row in the left half plane, decodes all the bits

from left to right along that row, moves to next top row

and iterates the process till all the bits are recovered.

We can also do the decoding by processing the array

of detected signals in four blocks corresponding to each of 

the four quadrants and then average the results obtained 

from the two block scanning and decoding process 

illustrated in Figure 4. This averaging technique will be

helpful especially in the presence of severe detector noise

when the decoding errors tend to propagate.

From the structure of equation (3) we observe that the

system is fundamentally non linear and anti causal. The 

non-linearity is due to the cross terms in the squaring

process. The non-causality arises because we cannot

initiate a recursion without the knowledge of a few 

transmitted bits.

IV - 123

➡ ➡



Scan

order

Scan

order

It is interesting to note that the decoding process is simple

and the algorithm has no extra storage overheads. The 

time complexity of the algorithm is linear in the number

of pixels decoded. We use threshold detection at Step 6 to

circumvent round off errors and for handling detector

noise.

To test the performance of the algorithm, several pages

of 100x100 pixel arrays were modeled to mimic the

detector output with 3 degrees rotational misalignment.

White Gaussian noise was added to the detector output.

The noise variance was varied to obtain the different

SNRs. Table I shows the average bit error rate (BER) 

versus signal to noise ratio (SNR). It is interesting to note

that the decoding algorithm performs well with high SNR

and is fairly robust with SNRs around 30-40dB intended

for practical scenarios. 

Figure 4: Scanning and decoding process 

We now outline the steps for the decoding of the first 

block in the form of an algorithm described below. The 

decoding algorithm for the second block follows anti

symmetrically in exactly the same way as the first block.

Table I: Bit Error rate versus Signal to Noise ratio

Outline of the Algorithm SNR (dB) BER

0

60 0.001

20 0.25

10 0.4034

Introduce the following definitions:

s : Array representing the decoded bits.

d : Array holding the detected signal values.

Initialize:

Set all the pixels of the array s  along the rows from

cossin1m  to as zero. Also set all the pixels

of the array

m

s  from columns cossin1m  to m

as zero. 

4. CONCLUSIONS 

1. Set the detector index to the top right corner 
),(),( mmcr

2. Obtain the SLM pixel indices that overlap with

 as (  and ),( cr )1,(),,1(),, bababa )1,1( ba

where

coscr sin,sincos rc),( ba .

We formulated the problem of rotational pixel

misalignment leading to non-uniform inter pixel

interference in optical imaging systems. The misalignment

induced inter-pixel interference can be interpreted as

reduction of SNR in the optical domain proportional to

the amount of overlap between the SLM and detector. We

proposed an algorithm for signal recovery in the presence 

of noise. The algorithm is robust for high SNRs and is

applicable for practical scenarios. 

3. Evaluate the components of the kernel

, and at the center

of the detector pixel .

),(,1 yxg ba ),(, yxg ba

x

),(1, yxg ba

,5.0 cyr 5.0
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