
AN APPROACH TO ARMA SYSTEM IDENTIFICATION 

 AT A VERY LOW SIGNAL-TO-NOISE RATIO 

S. A. Fattah, Student Member, IEEE, W. -P. Zhu, Senior Member, IEEE, and M. O. Ahmad, Fellow, IEEE 

Centre for Signal Processing and Communications, Dept. of Electrical and Computer Engineering 

Concordia University, Montreal, Quebec, Canada H3G 1M8 

ABSTRACT

A new approach for the identification of minimum-phase 

autoregressive moving average (ARMA) systems in the presence

of heavy noise is presented in this paper. A damped sinusoidal 

(DS) model for the autocorrelation function of a noise-free

ARMA signal is proposed to estimate the AR parameters, which 

overcomes the failure of conventional correlation based 

techniques in estimating the AR parameters of an ARMA system

at a very low signal-to-noise ratio (SNR). The MA parameters of 

the ARMA system are then estimated by using Durbin’s method 

along with an optimum order selection criterion. Both white noise 

and periodic impulse train excitations are considered for the 

application of the proposed method to system identification as 

well as to speech processing. Computer simulations are carried out 

based on both synthetic ARMA systems and natural speech

signals, showing superior identification results even at an SNR of 

5 dB for which most of the existing methods would fail.

1. INTRODUCTION 

Autoregressive moving average (ARMA) models have been

extensively studied in various fields, such as speech processing,

biomedical signal processing, control engineering, economics and 

others. Numerous methods have been developed for estimating the 

parameters of an ARMA model [1]-[5]. The maximum likelihood

methods, although known to be asymptotically consistent, suffer 

from convergence problems [1]. As an alternative, a great deal of 

research effort has been conducted on separate identification of 

AR and MA parts of an ARMA model. The estimation of the AR 

parameters, if performed first, is of crucial importance for the MA 

parameter estimation, since a poor AR estimation result would 

severely affect the estimation accuracy of the MA part. The

modified/extended Yule-Walker equations (MYWE) have been 

extensively used to identify the AR parameters of ARMA systems

[1]. In the presence of observation noise, however, the 

performance of MYWE methods would be significantly degraded 

due to the non-ideal nature of the autocorrelation function (ACF)

of the additive noise. Durbin’s method has been widely used for 

MA parameter estimation [1]. But its performance in a noisy

environment depends on the accuracy of the estimated

intermediate AR (IAR) model (both on its order and parameters). 

In the ARMA-cepstrum recursion (ACR) method [2], cepstral

coefficients of the ARMA system are used to estimate the MA

parameters. However, these cepstral coefficients are very sensitive 

to noise. The lattice filter method presented in [3] gives quite a 

good estimation result for an AR system with noise or the AR part 

of an ARMA system without noise, but it fails to yield an accurate 

estimation for the MA part in presence of noise. The ARMA

system identification methods, reported in [4]-[5], have attempted 

to minimize a suitably chosen cost function. Yet they are not able 

to provide an unbiased estimation at a low signal-to-noise (SNR).

In this paper, the identification problem of an ARMA system

with heavy additive noise is addressed. The damped sinusoidal

(DS) model, recently proposed in [6] for ACF of a noise-free AR 

signal, is extended for the modeling of a noise-free ARMA signal 

so that the AR parameters of the ARMA system can be estimated

through a sequential approximation of the ACF of the observed 

noisy signal. Both finite- and infinite-duration white noise 

excitations are considered in the derivation of the DS model.

Finite-length periodic impulse train excitation is also considered

for the application of the proposed identification method to speech 

processing. The MA parameters of the ARMA system are

estimated using Durbin’s method in conjunction with an effective 

selection criterion for the optimum order. The objective of this

paper is to present an efficient identification approach for ARMA

systems with a very low SNR.

2. PROBLEM FORMULATION 

A causal, stable, and linear time-invariant ARMA(P, Q) process 

can be characterized by
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where ak and bk are system parameters, P and Q the known system

order, and u(n) white Gaussian noise excitation with a zero-mean

and variance 2
u . The ACF of x(n) can be expressed as
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where N is the number of data points. In the noise-free case, the 

AR parameters can be estimated using Rx( ) [1]. In the presence

of noise, the observed signal y(n) can be written as 
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where v(n) is a white Gaussian noise with zero-mean and variance 
2
v . It is usually assumed that v(n) is independent of u(n). From

(2) and (3), one can obtain
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where Ry( ) is the ACF of y(n). Although (4) provides a simplest

way of computing Rx( ), it is not suitable for the case of very low

SNR due to the non-ideal nature of the ACF of v(n). In most of the 

existing methods it is usually assumed that the signal and additive

noise are uncorrelated. But at a very low SNR this assumption is 

violated and the estimate of Ry( ) using the conventional method

gives significant error at all lags other than the zero lag. Hence,

many researchers have pursued a separate estimation of the AR

and MA parts of the ARMA system in order to improve the 

identification performance in a noisy environment. In what

follows, we will propose a new approach for estimating the 

parameters of a heavily noise-corrupted ARMA system.

3. ESTIMATION OF AR PARAMETERS 

The transfer function of the ARMA system of order (P, Q)

described by (1) can be expressed as 
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where pk and zk denote, respectively, the kth pole and zero of the 

system, and k is the partial fraction coefficient. It is assumed in 

this paper that all zeros and poles are of the first-order. Using (5), 

the output of the noise-free ARMA system can be written as 
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where h(n) represents the impulse response of the ARMA system,

as given by
P
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In conventional system identification problems, only infinite-

duration (a relatively large duration N, denoted as Ni) white

Gaussian noise excitation is considered. In speech processing

applications, however, finite-duration (a relatively small duration

N, denoted as Nf) excitation is also required. In order to provide a

more accurate description of the speech spectra, especially for 

nasal or nasalized sounds, the vocal tract is represented as an 

ARMA model. In linear predictive coding (LPC), speech is

considered as the output of a slowly time-varying ARMA filter 

excited by a periodic impulse train for voiced speech or a random

white noise for unvoiced speech [7]. By using (6) in (2) and 

assuming a white Gaussian noise excitation, one can deduce ACF 

for both infinite- and finite-duration excitations as given by
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Here,  is a constant that depends on the variance of the input

excitation. In the case of infinite duration excitation, we have 

assumed M << Ni in obtaining (8).

A periodic impulse train excitation with period T and duration Nf

can be represented as 

)/(,,)()(
0

TnnTmTnnu
m

  (10) 

where  represents the largest integer less than or equal to .

With this excitation, x(n) can be derived as 
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Using (11) in (2), one can obtain an ACF of x(n) for the finite-

duration periodic impulse train excitation. The expression will be

similar to that given by (8) with a different expression for the

constant term k .

In general the ACF given by (8) can be rewritten as
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where represents the number of real poles plus the number of 

complex conjugate pole pairs, rl and l are the magnitude and 

argument of pl, respectively, and l and l are the constants which

can be expressed in terms of k. The ACF given by (12) is

referred to as the damped sinusoidal (DS) model for the noise-free

ARMA signal.

Each of the component functions of the DS model can be

estimated sequentially from M nonzero lags of Ry( ) [6]. The 

parameters of the lth component function, are chosen such that the 

total squared error between the (l 1)th residual function and the

lth component function is minimized. The lth residual function is 

defined as 
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with )()(0 yR

Fl( ) = l cos( l ) + l sin( l )

The total squared error is then defined as 
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The superscript “(i)” in (14) denotes the iteration index. At each 

iteration,
)(i

l and )(i

l can be determined by minimizing given

the values of and . The values of r

)(i

lJ

)(i

lr
)(i

l l and l corresponding to 

the global minimum of Jl, are selected to be the estimate of a pair 

of complex conjugate poles rle
(±j l), if 0 < l < . If l = 0 or ,

the estimate represents a real pole. Once all the poles have been 

estimated, the AR part of the ARMA system is identified.

Unlike the conventional correlation-based techniques, where 

Ry( ) is directly employed for estimation, the proposed method is 

able to yield a better estimate of Rx( ) at a very low SNR due to 

the indirect noise compensation implemented in the 

approximation of the DS model using M nonzero lags of Ry( ).

4. ESTIMATION OF MA PARAMETERS 

In Durbin’s method, the parameters of intermediate AR (IAR)

model are first estimated and then used to calculate the MA

parameters. In the presence of noise, y(n) is filtered by an 

estimated AR system in order to obtain the MA residual of the

ARMA signal. It can be shown that the resulting residual is

equivalent to a noise-corrupted MA signal, and a noisy IAR 

sequence will be available for the estimation of IAR parameters.
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However, due to the rapid decay of the ACF of the MA signal, the 

autocorrelation-based noisy AR identification techniques exhibit 

poor performance at a low SNR. Therefore, a lattice filter

algorithm has been applied to the identification problem of noisy

AR systems, which works directly in signal domain and yields

sufficient accuracy [3].

For an MA signal, the optimum IAR order based on the

combined information criterion (CIC) is given as [8]
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The CIC based order selection principle is defined as 
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is the PARCOR coefficient that needs to be calculated in the 

lattice filter algorithm. Note that the order L determined by (15) is 

not sufficient in a heavy noisy situation, since the resulting

residual can be viewed as a noisy IAR signal.  We propose a 

higher order for the IAR model, namely, L  = 2K+2P+Q.  Our

extensive experimentation has shown that this choice gives 

sufficient estimation accuracy without requiring further increase

in the IAR order.

5. SIMULATION RESULTS 

In this section, the proposed method is simulated and compared

with some of the existing ones including the ACR method [2] and 

the order selective Durbin’s (OSD) method [1], showing various 

identification results for both synthetic and natural signals. In the

OSD method, L  , instead of L [8], is used as the IAR order for 

better estimation results. In both OSD and ACR methods, least

squares MYWE [1] are used for estimating the AR parameters.

5.1. Synthetic systems

An input data sequence is generated according to (1) and (3) with 

N = 4000 samples and 
2

u =1. To determine the DS model

parameters in a computationally efficient manner, an initial 

estimate of l [0, ] is first obtained by searching the full range 

at a resolution of 0.01. Then around the initial estimate, a finer 

search at a resolution of 0.001 is performed. In both cases, we 

assume that 0.5  rl  0.999 with a resolution of 0.001. The 

number of lags for the ACF is set to be M = 10P. Each experiment

contains 20 independent runs in order to obtain the average

estimate. Table 1 shows the average values of the estimated

parameters of an ARMA(4,3) system and their standard deviations 

from mean (SDM) as well as those from true values (SDT),  where

three methods have been employed and two SNR values, 10 dB

and 5 dB, have been considered. It is seen that the performance

of all the three methods is comparable at 10 dB. However, at the

SNR of 5 dB, only the proposed method is able to estimate the 

parameters whereas the other two have completely failed.

Moreover, the proposed method exhibits a good consistency as

reflected by the small values of SDT and SDM at both SNR

levels.

Fig. 1 depicts the pole-zero estimates of an ARMA(6,4)

system using the proposed method at SNR = 5 dB. The true 

parameters of the system are set as {ak} = [1 0.6034 0.3245 

0.3458 0.3644 0.5167 0.8155] and {bk} = [1 0.62 0.52 0.03 0.25].

Table 1. Performance comparison of different methods

(Estimated parameters with SDM and then SDT are shown)

SNR

dB

True

Values

Proposed

method

OSD

method

ACR

method

a1 = 

2.5950

2.5813

±0.0697

±0.0711

2.4978

±0.0938

±0.1351

2.4978

±0.0938

±0.1351

a2 = 

3.3390

  3.3286 

±0.1368

±0.1372

  3.1262 

±0.2113

±0.2999

  3.1262 

±0.2113

±0.2999

a3 = 

2.2000

2.2096

±0.1419

±0.1422

2.0169

±0.1817

±0.2579

2.0169

±0.1817

±0.2579

a4 = 

0.7310

  0.7281 

±0.0793

±0.0793

  0.6605 

±0.0688

±0.0985

  0.6605 

±0.0688

±0.0985

b1 = 

2.0922

2.0557

±0.0706

±0.0794

1.8542

±0.3254

±0.4031

2.0593

±0.0951

±0.1006

b2 = 

1.8438

  1.8467 

±0.1010

±0.1010

  1.4638 

±0.5151

±0.6401

  1.9128 

±0.1755

±0.1886

10

b3 = 

0.6480

0.6764

±0.0535

±0.0605

0.4645

±0.2871

±0.3408

0.8338

±0.1070

±0.2144

a1 = 

2.5950

2.5701

±0.1077

±0.1106

0.6582

±0.1374

±1.9416

0.6582

±0.1374

±1.9416

a2 = 

3.3390

  3.2629 

±0.1986

±0.2126

  0.1663 

±0.1785

±3.1777

  0.1663 

±0.1785

±3.1777

a3 = 

2.2000

2.1185

±0.2198

±0.2344

0.1212

±0.1546

±2.3263

0.1212

±0.1546

±2.3263

a4 = 

0.7310

  0.6793 

±0.1234

±0.1338

  0.1279 

±0.1091

±0.6129

  0.1279 

±0.1091

±0.6129

b1 = 

2.0922

2.0674

±0.2007

±0.2022

0.5900

±0.5572

±1.6022

0.5560

±0.1384

±1.5424

b2 = 

1.8438

  1.9093 

±0.2133

±0.2231

  0.1747 

±0.4603

±1.7314

  0.0720 

±0.1645

±1.7794

5

b3 = 

0.6480

0.6991

±0.1223

±0.1325

0.0296

±0.2646

±0.6726

  0.0506 

±0.1249

±0.7097

Obviously, the estimation accuracy for both poles and zeros are 

very good.

5.2. Natural speech

To investigate the performance of the proposed identification 

technique in a natural speech signal, we have considered some

English phonemes from TIMIT standard database with a sampling

frequency of 16 KHz. Note that the pre-filtering is not performed

in order to see the accuracy of the frequency estimation over the

entire range. Fig. 2 shows a comparison of the spectral analysis

results for different SNR values obtained from different methods
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Fig. 1. Estimated poles and zeros of an ARMA(6,4) system at

SNR = 5 dB (“ ”: true poles, “ ”: true zeros, “ ”: estimated

poles, and “ ”: estimated zeros).

considering an ARMA(8,4) model, where a naturally spoken nasal 

sound /m/ of the word “him”, uttered by a female speaker was

taken. In this experiment, the synthesized speech is produced

from the average estimate of the vocal tract parameters. The 

excitation period or pitch (T) is estimated according to the scheme

given in [9] and the excitation gain is adjusted based on the RMS

power level and the peak power spectral density (PSD). The ACF

lags are considered up to T/2. According to the general behavior 

of the vocal tract parameters, rl is searched within 0.8  rl  0.999 

and search range for l can be decreased from the fundamental

knowledge of formant bands. It is seen from Fig. 2 that only the 

proposed method is able to identify the formant location quite

accurately both at high and at very low SNRs.

6. CONCLUSION 

A two-step identification approach for noisy ARMA systems has

been proposed. The AR parameters have been estimated using the

proposed damped sinusoidal model for the ACF of a noise-free 

ARMA signal along with a sequential approximation of the ACF

of the observed noisy signal. The estimation of MA part has been 

carried out by employing Durbin’s method with an optimum IAR 

order selection. It has been shown that the proposed approach is 

much superior to some of the existing methods and is able to 

identify accurately a noisy ARMA system at a very low SNR

level.
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