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ABSTRACT

A new hybrid lattice structure to identify the parameters of an
unknown 2D ARMA (M, N) system, where M and N can take
arbitrary values different from each other, has been presented.
The proposed hybrid analysis model incorporates both two-
channel and single channel lattice stages in an interleaved
manner. The two-channel lattice part is based on the formerly
proposed 2D ARMA lattice modeling approach where only the
case M=N was covered. A new formulation to calculate the
ARMA parameters has been derived taking the estimated
parameter b, into consideration.

1. INTRODUCTION

The fundamental problem of identifying a 2D (two-dimensional)
system from measurements of its output response to known input
excitation such as a white noise source, is one that impacts on
many important fields of interest. Because of its numerical
robustness and consistency, linear identification under lattice
form is of special interest. Although many valid 2D AR
(autoregressive) lattice structures have been developed
exhibiting different properties [1-3], 2D ARMA (autoregressive
moving average) lattice modeling and identification studies are
not mature enough. Kayran has proposed a method [4] to obtain
a 2D ARMA (M, N) lattice model for M=N using a two-channel
AR lattice filter where (M, N) represents the number of points in
the prediction support region corresponding to the AR and MA
orders, respectively.

This paper proposes a new hybrid lattice structure for 2D
ARMA (M, N) modeling and identification where M and N can
take arbitrary values different from each other. The 2D ARMA
system to be identified is defined as follows:

Yk ky) = byx(ky,k,) + Zw:bnx((klskz) —n)
L, 0
= 2.a,7((k, k) =m)

Here the notation y((k,, k»)-m) and x((k,, k;)-n) denotes the
mth or nth element behind y(k;, k;) or x(ky, k») in the prediction
region. ARMA system parameters a,, , b, and b, are identified
provided that the system input x(k;, k;) and the system output
V(ky, ky) are known.

2. HYBRID LATTICE DESIGN

The proposed hybrid lattice structure incorporates both two-
channel and single-channel AR lattice stages in an interleaved
manner. In order to compose the analysis model for an ARMA
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(M,N) system where M # N, we need to define S as the smaller,
and G as the greater of the (M, N) pair. The compact form
equations defining the two-channel lattice stages are given
below. Here, r=1,2,..,S and p=r,...,S for each r.

£ (koky) = £k k) + KO DU (k) (2.0)

b\ (ke ky) =0 (ki k) + KO0V (kiky)  (2.b)

Here f;’;), (k,ky) =[ fu(: ) (ky, k) f;” (k,k)]" is a vector of 7th

lattice stage forward prediction errors of the first and second
channels, fu(’) (k,,k,) and f[(:) (k,,k,) , respectively. In the same

manner, b(p")(kl,kz) = [bi:)(kl,kz) b[([f')(kl,kz)]r is a vector of rth

lattice stage backward prediction errors of the first and second
channels, 5" (k,,k,)and b (kk,), respectively. K(pr_)r and

K;") are the real valued 2x2 matrices of the rth lattice stage

forward and backward reflection coefficients, respectively. They
are obtained by differentiating forward and backward prediction

error vectors with respect to K(p’_) and K;’) and equating the

result to zero [4].

The zeroth lattice stage forward and backward prediction
error vectors of the two-channel and single channel lattice stages
are defined as follows. For the two-channel lattice stages given
in (3.a), p=1,...,S and for the single channel lattice stages given
in (3.b), p=5+1,....G.

f,(zO)(klakz) = b(pO)(kl’kz) = [u((klakz) - p) t((klakz) - p)]T (33)

x(kk,) M <N

(3.b)
ykoky) M >N

fp(O)(klskz) = bLO)(klskz) = {

The initial channel inputs of the two-channel lattice stages
are defined as follows. The first channel input u(k,k,) has been
chosen to be the difference of y(ki,k;) and x(k;,k;) in order to
use x(k,k,) in the estimation of y(ki,k,).

u(klakz)éJ/(kpkz)_x(kl’kz) 4
k)2 x(k,ky) M=N 5
(ki key) = Wk, M<N (5)

Single-channel AR lattice stages are treated in two parts. In
the first part, the single channel lattices are interleaved with two-
channel ones and r=1,...,S and p=S§+1,...,G. In the second part
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there are only single channel lattices for »=S+1,..,G and
p=r,...,G. The compact form equations defining the single-

channel lattice stages are given below. k!’ and k" are the
e :

forward and backward reflection coefficients, respectively [1].

LGk [0 RO A k) ©

BOGky) | KD 1| B k)
The b, parameter is not readily available from the calculated
lattice parameters, since all lattice stages contain AR recursions.

We have modified the b, estimate given in [4] in accordance
with our channel inputs and obtained the following formulas.

ELf (kisky) 1) (hisky)] for
ELf,)" (k. k)’

E[(f,) (ko k)(f,) (k) = £ (Kioky))] for
BN/, (ko k) = ) (k)]

by =1+ M>N  (1a)

M<N (1b)

b, =

3. CALCULATION OF THE ARMA PARAMETERS

We propose a new method to calculate the ARMA parameter

vectors 4 and b , once we have obtained the lattice reflection
coefficients, the tap weights of the forward prediction error

filters of both channels and the estimated parameter 1;0. Here a

represents the identified AR parameters and b represents the
identified MA parameters of the ARMA model as defined below.

ayl" bElh by . by ®
In order to calculate the forward and backward prediction

error filter tap weights, we use the single channel and two-
channel Levinson-Durbin recursions; the latter given below for

convenience.
(r) A(r) o)
a a g
) _ Upr | _ Uy, (T u,
ap—r - (r) - A(r) Kp—y A (r) (9a)
a’pﬂ a[w g’P

(r) &) a0

P -0 I - IR i
S e P R P I (9.b)

P (r) &) 4 a(r)

gyﬂ gr,, ar,,,,.

Here a” and a” denote the rth order tap weight coefficient

U, o

AAA ~
a=[a1 a

vectors of the forward prediction error filters related to the
forward prediction of the (p-r)th point for the first and second
gf": and g'” denote the rth order tap

channels, respectively. .
weight coefficient vectors of the backward prediction error filters
related to the backward prediction of the pth point for the first
and second channels, respectively. For the case M=N, we have
derived the following equations for the ARMA parameter

estimates the proofs of which are given in Appendix.

a a," (1) al" (1)
a=| |= +(1-b,) (10.a)
a, | |a, (M) a|"' (M)

a;" (M +1)

b, al (M +1)
: (10.)

+(1-b,)
al (N + M)

=
Il
Il

by| (2. (M+N)
For the case M > N, the following matrix form equations hold for
the ARMA parameter estimates.

. T
~ oA+ a-ba™
a .
P al (V) + (1= byl (V)
a=| M= ™ 0 (11.a)
a (M) '
N+l a, (N+1
L am | .
| aen
b, al'" (M +1)+(1-b)a" (M +1)
b=| ! |= : (11.b)

by | |al(M+N)+(1-b)al (N + M)

For the case M < N, the following matrix form equations hold for
the ARMA parameter estimates the proofs of which are given in
Appendix.

a M+ (=) (a1 -a ()
a= : (12.2)
al (M) + (1= by) (a0 () a0 ()

—agfov (M +1)+(1 —190)(aj£4 (M +1) —agoM (M +1))

—aj (2M)+(1=by)@ " @M) -al* (M + N))

=2
Il

(12b)
—aLf]V J2M +1)

(M)
-, (M+N)

The hybrid lattice design algorithm described above has been
summarized for M#N in Algorithm 1 in 11 steps. It should be
noted that for the case M =N, the whole structure reduces to two-
channel lattice stages, hence there is no hybrid structure
involved.

4. EXPERIMENTAL RESULTS

To illustrate the functionality and effectiveness of the proposed
2D hybrid lattice design, we give here a computer simulation
example where AR order is smaller than the MA order (=3 and
N=8). The problem we wish to solve is simultaneously
identifying the AR and MA parameters of the unknown 2D
ARMA (3,8) system given the data fields x(ky, k;) and y(k;, k).
The original ARMA parameters have been chosen so as to
satisfy the stability conditions [1]. The system input x(k;, k) is
white-Gaussian noise with variance ¢;,> and mean zero.
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Algorithm 1. Hybrid Lattice Algorithm for M#N.

Step 1:Determine S and G.

M>N = S=N and G=M

N>M = S=M and G=N

Step 2: Determine the hybrid structure.

Two-channel: »=1,...,S and p=r,...,S Vr

Single channel: r=1,...,S and p=S+1,...,G Vr
r=8+1,...,G and p=r,...,G Vr

Step 3: Initialization: r =0

p=1,...§ use Eq. (3.2)

p=S+1,...,G use Eq. (3.b).

Step 4: r=r+1. p=r. If r <G go to Step 5 else go to Step 10.

Step 5: See Step 2 if two-channel or single channel.

Step 6: Calculate Reflection Coefficients

Calculate K(;j,, and l_(;r) for two-channel.
Calculate k(f: and k;:) for single channel.

Step 7: Forward and Backward Prediction Errors
Calculate using Eq. (2.2) and (2.b) for two-channel.
Calculate using Eq. (6) for single-channel.

Step 8: Calculate Tap-weight Coefficients

Calculate using Eq. (9.a) and (9.b) for two-channel.
Calculate using Levinson-Durbin for single-channel.
Step 9: p=p+1.1f p <G go to Step 5 else go to Step 4.

Step 10: Calculate l;O using Eq (7).
Step 11: Obtain ARMA estimates using Eq. (11) or (12).

for long data records, thus verifying this newly proposed
structure. For short data records, the results of the hybrid lattice
algorithm prove to be better than the LS estimates. This hybrid
lattice algorithm inherits the modular structure of the
conventional lattices provided that the ordering of the 2D data
points is appropriately chosen. One major advantage compared
to LS is that there is no need for matrix inverse operations.

Table 1. Identification results for the Lattice and LS algorithms.

We have compared the estimates obtained using our new hybrid
lattice algorithm with the LS (Least Squares) estimates. The
identification results are listed in Table 1 for different data field
sizes, the first row showing the hybrid lattice and the second row
showing the LS estimates. Both the lattice and LS estimates have
been calculated assuming that the ordering of the data points in
the 2D prediction region is known.

The performance of the developed method has been
evaluated by the Itakura-Saito distance measure [5], L;, L, and
L., vector norms. By the use of Itakura-Saito distance, a measure
for the similarity between original and estimated power
spectrums has been obtained. All the performance criteria have
been listed in Table 2 for both the lattice and LS estimates.

By looking at the Itakura-Saito distances, we can infer that
there is a close match between the power spectrums obtained
using original and identified parameters by both lattice and LS
algorithms. Lattice algorithm gives a better power spectrum
match (a lower Itakura-Saito distance) for small data sizes. The
Ly, L, and L., norms show that obtained parameter estimate
vectors are quite close to the original ones.

5. CONCLUSIONS

We proposed a new hybrid lattice algorithm for identifying the
parameters of an unknown 2D ARMA (M,N) system. The main
advantage of the proposed algorithm is that M and N can take
arbitrary values different from each other. We have also derived
new formulas for the ARMA parameter estimates taking
estimated parameter b, into consideration, thus resulting in a
more reliable parameter identification. We have compared the
results with the LS estimates and have seen that our hybrid
lattice identification results closely converges to the LS estimates

Original ARMA Identified ARMA Parameters
Parameters LAT and LS
Data Field Size
10x10 50x50 100x100
AR 0.3 0.3878 0.3063 0.3154
Parameters 0.3942 0.2986 0.3051
-0.3 -0.0913 -0.2184 -0.2251
-0.1303 -0.2431 -0.2751
0.2 0.4097 0.2893 0.2830
0.3274 0.2766 0.2297
MA 0.2 0.1929 0.2010 0.1994
Parameters 0.2355 0.2062 0.2058
0.2 0.4131 0.2310 0.2258
0.3985 0.2435 0.2195
0.2 0.2981 0.4315 0.3745
0.2996 0.2627 0.2233
-0.2 -0.1681 -0.2038 -0.1932
-0.2054 -0.1975 -0.1986
0.2 0.3399 0.2430 0.2384
0.2431 0.2352 0.2142
-0.3 -0.1827 -0.2357 -0.2403
-0.1874 -0.2556 -0.2808
0.3 0.1952 0.2496 0.2592
0.2655 0.2587 0.2868
-0.5 -0.4853 -0.4967 -0.5047
-0.5414 -0.5029 -0.5002
by 0.8 0.8281 0.8585 0.8580
0.7402 0.7949 0.7955

Table 2. Performance criteria for the Lattice and LS algorithms.

Performance Data Field Size
Criteria 10x10 50x50 100x100
LAT and LS
L;-norm 1.2613 0.6639 0.5827
1.0218 0.3787 0.1609
L,-norm 0.4435 0.2849 0.2324
0.3543 0.1412 0.0570
L..-norm 0.2131 0.2315 0.1745
0.1985 0.0766 0.0297
Itakura-Saito 0.3641 0.2733 0.2710
Distance 0.4475 0.0489 0.0047
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APPENDIX

The first and second channel prediction error fields of the last
prediction orders for the case M = N can be defined as follows .

M
oy Gy k) 2 y(ky k) —x(kl,kz)—Zamy((kl,kz) —m)
m=1 (A.1)

N
=D (B, — @)y k) —n)
n=1

N
Sy et k) 2 x(ky, k) = Y (7 = 6,)x((ky ky) = 1)
n=l (A2)

M
= By, ky) = m)
m=1

If we substitute x(k, k,) derived from (A.2) in (1) and (A.1)
respectively, we obtain the following equations for y(ki, k»).

M
y(ki,kp) = bofx](\)’(kpkz) + Z(boem = ay)y((ky,kp) —m)
m=1
N (A3)
+Z(b0(7n —6,)+b,)x((k1,ky)—n)

n=l1

M
$h1ske) = fog sk + £y (ki kp) + (6, + )y (Uh k)= m)

m=1

N
Y =0yt By = )x((h k) =) (A4)

n=l1

We now compare (A.3) and (A.4) to conclude with the
following relations for the AR and MA coefficients of the
ARMA model.

Gy =~y — (1 b0)Opy m=1..M  (AS)

by =(By - +(—-b)(7,—6,) n=L.N (A6)

-0, is the aLQ”’(m) and -6, is the aiON’(m) given in (10.a),
m=1,...,M. Likewise (B,-0) is the a'"’(n)and (%-6,) is the

1y

al"(n) given in (10.b), n=M+1,..., M+N.

The Mth order first and second channel prediction error fields
for the case M> N can be defined as follows.

M
fu](l)l(kl Jy) 2yl ky) = x(ky k) +Z(Z;nx((k1,k2) —m)

m=1
” (A7)

= (@ + By (U ky) = m)

m=1

M
Sl ey oey) 2 () = (O + 61y ey ) = m)
” =l (A8)
£ Gx(( k) = m)
m=1

The final Nth (» = N; p = N) order forward prediction error field
of the first channel can be defined as follows:

M
Sy Gy 2 y(ki k) = D 0y (ki) = m)
m=1
N (A.9)
~x(ki k)= Y Bk ) =)
n=1
If we substitute x(k;, k;) derived from (A.7) in (1) and (A.9)

respectively, we obtain the following equations for y(k;, ky).

$lhkiky) = £ (ki) = fo (ki) + 4 (ko)

M
4D+ (U + 0p) =y + B3t ) =)

m=1

M N
4 (Ba= G = )x(llad)=m+ Y Byx(asko)=m)
n=l1 n=M+l
(A.10)
3(hi-k2) = by (ki-ko) = £ (k1K)

M
= (= b+ )= @+ B ) = m)
m=1

M N
4 by = oG~ )x((lrk) =m)+ D byx((hasko) =)
n=l1 n=M+1
(A.11)
We now compare (A.10) and (A.11) to conclude with the

following relations for the AR and MA coefficients of the
ARMA model.

ap =0 + (1= b0) (O + i) = (Vi +0p)) m=1..M
by =B, +(1—=by)ct,—6)) n=1,..Mand b, =S, n=M+1,.N
(A.12)
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