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ABSTRACT

A frequency domain approach to continuous-time auto re-
gressive (AR) signal modeling is proposed. The algorithm
allows for data pre-filtering as opposed to conventional AR
modelling in the time domain. We illustrate the method by
extracting resonance frequencies from data from a real-life
application.

1. INTRODUCTION

A characteristic problem with signal processing using tacho-
meter measurements on rotating axles is that the measure-
ments are uniform in the angle domain but non-uniform
(speed dependent) in the time domain. This comes from the
fact that most common sensors for such applications mea-
sure the time between certain angle displacements, which is
thus speed dependent. One can for instance illustrate this
with the ABS sensors in a car, which give between 50 and
100 pulses per revolution for each wheel. If vibration anal-
ysis and other similar problems are to be approached in the
time sampled domain, one either has to rely on data inter-
polation to uniform time sampling or derive dedicated algo-
rithms. Motivated by the recent advances in system identi-
fication in the frequency domain [1, 2], we present a fre-
quency domain approach and compare it at a theoretical
level to the time domain algorithm proposed in [3, 4].

The main specifications on a procedure aimed at high-
sensitivity vibration analysis are as follows:

1. Being based on parametric physical models of the vi-
bration.

2. Operate on short data batches in a pre-specified speed
interval where the data pass several quality checks.

3. Potential to reject wide band disturbances that are non-
interfering with the vibration.

4. Potential to reject narrow band disturbances that are
interfering with the vibration.

The method given in [3, 4] successfully solves the first three
specifications, but not the last one. The method here on the
other hand can easily be modified for robustness to narrow

band interference. This general problem occurs in several
applications, such as in an automotive drive-line where the
vibration indicates engine knocks, or in robotics where vi-
brations come from the load, just to mention a few. The
text will however focus on Point 1, 2 and 3 in the list above.
There will only be a short discussion of time and frequency
domain methods with respect to Point 4.

2. TIME AND FREQUENCY DOMAIN
ALGORITHMS

2.1. Notation

Table 1 summarizes the notation and signal model that are
used in the time and frequency domain. Basically, vibration
analysis is approached by a continuous-time autoregressive
(CAR) model motivated by a spring-damper model of the
axel and its contact paths with the surrounding. Superim-
posed on this signal are other vibrations and external distur-
bances and the speed signal itself. Measurements are taken
each time tk as a pulse is received from the ABS sensor.
These pulses represent a certain fixed angle displacement,
which explains the special appearance of y[k] = y(tk) in
Table 1.

2.2. Algorithms

The time domain algorithm proposed in [3, 4] contains the
following steps: (1) interpolate data to a a high sampling
rate to avoid aliasing, (2) band-pass filter the signal to get rid
of broad band disturbances and to focus on mode 2 in Table
3, (3) down-convert the signal utilizing deliberate aliasing,
(4) estimate a discrete time AR model and (5) extract vibra-
tion data from this model. It is not easy to modify this al-
gorithm to cope with narrow-band interference, so the only
practical solution is to turn off the algorithm when such a
disturbance is detected.

Table 2 outlines the proposed frequency domain algo-
rithm. Here, the narrow band disturbances can be inter-
preted as outliers in the estimate of the spectrum. Time
domain outliers have traditionally been dealt with by intro-
ducing more robust norms in the estimation criteria e.g [5].
It is our opinion that that this approach will be transferrable
to the case of frequency domain data. In this text, on the
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Time domain Frequency domain

y(t) =
1

A(p)
e(t) + d(t) (1)

y[k] = y(tk) =
2πk

L
+

∫ tk

tk−1

d(t)dt (2)

e(t) white noise,
A(p) AR model,
θ parameters in the AR model,
d(t) disturbance,
y[k] measured non-uniform samples of angle,
L number of cogs per revolution,
Angle uniform sampling, not time uniform sampling.

Φy(iω) = ΦH(iω)Φe(iω) + Φd(iω) (3)

ΦH(iω) =
σ2

|A(iω)|2 (4)

Φe(iω) = 1 white noise spectrum,
A(iω) AR model,
θ parameters in the AR model and noise,
Φd(iω) disturbance spectrum,
Φy(iω) ’measured’ spectrum.

Table 1. Signal models and assumption in time and frequency domains, respectively.

other hand, the focus will be on rejection of wide band dis-
turbances and short data batches. Managing these two is-
sues is a necessary condition for the overall usefulness of
the method in the context of vibration analysis.

3. FREQUENCY DOMAIN ESTIMATION

Let us define the truncated Fourier transformation of the
continuous time output {y(t) : t ∈ [0, T ]} in expression
(1) in Table 1 above as

YT (iω) =
1√
T

∫ T

0

y(t)e−iωtdt.

A complicating element in a practical estimation procedure
is that we do not have access to the entire continuous time
realization of the output. Instead we have, as pointed out
in expression (2) in Table 1, a finite number of samples of
the continuous output yt at time instances {t1, t2, . . . , tN}.
Therefore it is in some way necessary to approximate or
reconstruct the continuous time realization. In this paper
the output is reconstructed as

ŷ(t) =
N∑

i=1

y(ti)φi(t − ti)

where φi are interpolation kernels. In this text we will use
piecewise-constant interpolation, which will often go under
the name Zero-Order Hold (ZOH). From the interpolated
output it is possible to compute an approximation of the
Fourier transform which is

ŶT (iω) =
1√
T

N−1∑
k=1

y(tk)
e−iωtk−1 − e−iωtk

iω

in the piecewise constant case. From the expressions above
we can then calculate the approximate periodogram which

is denoted as

ˆ̂Φy(iω) =
∣∣∣ŶT (iω)

∣∣∣2

In order to reduce the variance of the periodogram, the
data batch is split into Nb sub-batches of duration Tn, n =

1, . . . , Nb. Then a periodogram ˆ̂Φ(n)
y is calculated for each

batch and an estimate is formed as a direct average

ˆ̂Φy(iω) =
1

Nb − 1

Nb∑
n=1

ˆ̂Φ(n)
y (iω).

This method is analogous to the method by Welch [6] for
the smoothing of spectral estimates.

When an estimate of the power spectrum is available
a CAR model can be identified by solving the following
Maximum-Likelihood (ML) procedure described in [7] and
[8]

θ̂ = arg min
θ

∑
k∈N

ˆ̂Φy(iωk)
ΦH(iωk, θ)

+ log ΦH(iωk, θ).

Here ΦH is defined as in (4) in Table 1. The frequencies
ωk, k = 1, . . . , Nω where ωk = 2πk/T, k ∈ N have been
selected such that the Fourier transforms of the output at
different frequencies are asymptotically uncorrelated. The
index set N denotes those frequencies we wish to use in the
estimation procedure.

4. PROPERTIES OF BIAS AND VARIANCE

The bias or disturbances present in the periodogram will
translate into bias in the parameter estimates. Therefore it is
important to a user of the method to know how these relate
to each other in order to minimize bias. He/she would also
like to tune the estimation procedure in order to minimize
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1. Approximate the truncated continuous-time Fourier
transform with

Ŷ (iωk) =
∫ T

0

ŷ(t)eiωktdt, (5)

ŷ(t) =
N∑

i=1

y(ti)φi(t − ti), (6)

wk =
2π

T
k, k ∈ N . (7)

2. Average the periodogram ˆ̂Φy(iω) =
∣∣∣Ŷ (iω)

∣∣∣2 over

batches with similar vehicle speed.

3. Maximum likelihood estimate the CAR-model

â = arg min
a

∑
k∈N

ˆ̂Φy(iωk)
ΦH(iωk, θ)

+ log ΦH(iωk, θ)

ΦH(iωk, θ) =
σ2

|(iωk)2 + 2γiωk + ω2
0 |2

Table 2. Frequency-Domain algorithm.

the variance of the parameter estimates. In [7] and [8] it is
possible to show that in the case of bias

E(θ̂ − θ0) ≈
∑
k∈N

S(iωk)∆Φy(iωk).

where θ̂ are the estimated parameters and θ0 are the true
parameter values. The relative bias in the periodogram es-
timate of the power spectrum is defined as

∆Φ(iωk) =
E

ˆ̂Φy(iωk) − Φ(iωk, θ0)
Φ(iωk, θ0)

Here we have for the sake of simplicity defined Φ = ΦH .
The sensitivity of the parameter estimates to the relative bias
in the periodogram is

S(iωk) = Ψ(θ0,Φ)−1Ψk(θ0,Φ).

The so called relative sensitivity is defined as

Ψk(θ0, Φ) =
Φ′

θ(iωk, θ0)
Φ(iωk, θ0)

.

and

Ψ(θ0, Φ) =
∑
k∈N

Ψk(θ0,Φ)Ψk(θ0,Φ)T

Non-interfering disturbances occur in areas where the model
spectrum ΦH is small and the relative bias can therefore be
quite large. Hence in order to avoid parameter bias it is
necessary to ignore information from frequencies where the
relative bias and sensitivity are large.

In an online automotive application, computational power
and available memory will always pose important design
constraints. Calculating the periodogram can be cumber-
some and it is important to know which frequencies carry
the most information. In the case of variance it is shown in
[7] and [8] that

E(θ̂ − θ0)(θ̂ − θ0)T → Ψ(θ0,Φ)−1.

as T → ∞ and the largest sampling interval goes to zero.
Again the relative sensitivity plays an important role. In
order to reduce the variance information from frequencies
where the relative sensitivity is large should be prioritized.

5. EXPERIMENTAL RESULTS

In this section the theory presented above is applied to the
estimation of the resonance peak of the torsional vibrations
of a pneumatic tire. The samples y(tk) are pre-processed
measurements from an axel angle measurement device. The
frequency spectrum of y(t) is approximately divided as sum-
marized in Table 3. The vibrations in the range 30-60 Hertz

0-10 10-15 15-30 30-60 60-80 80-100 100–
Speed Mode 1 Noise Mode 2 Noise Mode 3 Noise

Narrow-band noise components

Table 3. Frequency spectrum with approximate limits in Hz

can be modelled as a spring-damper system excited by white
noise e(t)

y(t) = H(p)e(t)

with transfer operator

H(p) =
σ

p2 + 2γp + ω2
0

.

The output will therefore have the continuous-time spec-
trum

ΦH(iω) =
σ2

(ω2 − ω2
0)2 + 4γ2ω2

. (8)

with a resonance peak located at the frequency

ωres =
√

ω2
0 − 2γ2

For the special parameterization of the spectrum in expres-
sion (8) the relative sensitivity functions for the respective
parameters are shown in Figure 1. Here we have chosen
γ = 33.88 and ω0 = 289.687. This means that wres =
285 rad/s or fres = 45.47Hz. From this figure, we con-
clude that γ is sensitive near the natural resonance frequency
of the system. The frequency ω0 on the other hand is par-
ticularly sensitive at low frequencies. According to Table 3
there is noise between 15 and 30 Hertz and 60 and 80 Hertz.
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Fig. 1. Relative sensitivities for γ (upper) and ω0 (lower).

Therefore we restrict the frequencies used to those between
30 and 60 Hertz.

In Figure 2 we have estimated the resonance frequen-
cies from the refined set of real life data from an ABS sen-
sor. The data have been divided into four parts. These parts
have then been subdivided into a set of batches with a dura-
tion of a certain number of revolutions/laps of the tire. The
number of laps per sub-batch is indicated on the x-axis of
the figure. Periodograms have been estimated using ZOH
for each sub-batch and subsequently averaged in order to
yield four estimates of the spectrum of each batch. The
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Fig. 2. Resonance frequency fres in Hertz versus batch size
in number of tire laps. Bars indicates one standard devia-
tion.

mean value and standard deviation are then plotted. The
figure indicates that the method is feasible and that a batch
size of about 10 laps is sufficient to yield a stable estimate
of the resonance frequency with moderate variance. Below

10 laps per sub-batch the mean value of parameter estimates
decrease rapidly due to leakage bias from the short observa-
tion time Tn of each sub-batch.

6. CONCLUSIONS

In this paper a frequency-domain alternative to the estima-
tion of axel vibrations has been outlined. The method has
proved to be feasible on real-life data. It is also thought to be
easily extended in order to reject narrow band disturbances
interfering with the vibration. An algorithm which is more
robust to outliers could be acquired if the probability den-
sity function in the ML method is changed to a more robust
one[5]. This would be a natural objective of future work.
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