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ABSTRACT

The Kullback Information Criterion, KIC and its univariate
bias-corrected version, KICc are two recently developed
criteria for model selection. In this paper, a small sample
model selection criterion for vector autoregressive models is
developed. The proposed criterion is named KICvc, where
the notation “vc” stands for vector correction, and it can be
considered as an extension of KIC for vector autoregres-
sive models. KICvc is an unbiased estimator of a variant of
the Kullback symmetric divergence, assuming that the true
model is correctly specified or overfitted. Simulation re-
sults shows that the proposed criterion estimates the model
order more accurately than any other asymptotically effi-
cient method when applied to vector autoregressive model
selection in small samples.

1. INTRODUCTION

Model selection is an important step in vector autoregres-
sive modelling. Such selection is often facilitated by the use
of a model selection criterion. In this paper, the problem
of vector autoregressive (VAR) model selection when the
sample size is small is considered. The VAR model is prob-
ably one of the most common and straightforward methods
for modelling multivariate time series data. Another typical
signal processing application of VAR models is clutter sup-
pression in airborne radar signal processing [1].
A model selection criterion can be designed to estimate an
expected overall discrepancy, a quantity which reflects the
degree of similarity between a fitted approximating model
and the generating or ”true” model. Estimation of Kull-
back’s information [3] is the key to deriving the Akaike In-
formation criterion, AIC [2]. Whereas, from the estimation
of Kullback’s symmetric divergence [4] follows the Kull-
back Information Criterion, KIC [5].
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KIC serves as an asymptotically unbiased estimator of a
variant of the Kullback’s symmetric divergence between the
generating model and the fitted approximating model under
the assumption that the true model belongs to the class of
candidate models. As the dimension of the candidate model,
k, increases compared to the sample size, n, KIC becomes
a strongly negatively biased estimate of the variant of the
Kullback symmetric divergence and leads to the choice of
over parameterized models. A bias corrected version of
KIC, denoted KICc has been recently proposed for lin-
ear regression and univariate autoregressive models [6].
The correction of KIC proposed in [6] is not appropriate
for VAR models. In this case, KICc will produce a bi-
ased estimate of the Kullback symmetric divergence and
will lead to underfitting due to the choice of an under pa-
rameterized model. The reason is that the VAR models con-
tain many more unknown parameters than the correspond-
ing univariate AR models. In this paper, a new information
criterion, denoted KICvc, is proposed as a bias correction
of KIC for VAR models.
The remainder of this paper is organized as follows. In sec-
tion II, we briefly review KIC and its corrected version
KICc. Section III, is devoted to a development of the new
proposed criterion, KICvc for VAR model selection. A nu-
merical example of comparison is given in section IV and a
conclusion is given in section V. A brief theoretical justifi-
cation of the proposed criterion is also presented.

2. A BRIEF REVIEW OF THE DERIVATION OF
KIC AND KICC

Suppose a collection of data yn = (y1, . . . , yn)� has been
generated according to an unknown parametric model p(y|θ0).
We try to find a parametric model which provides a suitable
approximation for p(y|θ0).
Let Mk = {p(y|θk)|θk ∈ Θk} denote a k-dimensional
parametric family and let θ̂k denote the vector of parame-
ters estimate obtained by maximizing the likelihood func-
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tion p(yn|θk) over Θk. For simplicity, we will assume k =
1, 2, . . . , kmax, so the collection Mk’s consists of nested
families, i.e, Θ1 ⊂ Θ2 ⊂ . . . ⊂ Θkmax

of dimension 1
through (kmax) [2]. It is also assumed that the search is car-
ried out in a parametric family of distribution including the
true model, i.e, θ0 ∈ Θkmax

.
To determine which candidate model best approximates the
generating unknown model p(y|θ0), we need a measure which
provides a suitable reflection of the disparity between p(y|θ0)
and an approximating model p(y|θ̂k). The Kullback’s sym-
metric divergence is one of such measure.
Kullback’s symmetric divergence between two parametric
densities p(y|θk) and p(y|θ0) is defined as

2Jn(θ0, θk) = 2In(θ0, θk) + 2In(θk, θ0)
= Eθ0 {−2 ln p(y|θk)} − Eθ0 {−2 ln p(y|θ0)}
+ Eθk

{−2 ln p(y|θ0)} − Eθk
{−2 ln p(y|θk)}

= dn(θ0, θk)−dn(θ0, θ0)+dn(θk, θ0)
− dn(θk, θk),

where In(θi, θj) is the directed Kullback divergence and
Eθj{.} represents the expectation with respect to the den-
sity p(y|θj). Since dn(θ0, θ0) does not depend on θk, any
ranking of the candidate models according to 2Jn(θ0, θk)
would be identical to ranking them according to Kn(θ0, θk)
defined by

Kn(θ0, θk) = dn(θ0, θk) + dn(θk, θ0) − dn(θk, θk). (1)

Therefore, Kn(θ0, θk) would provide a suitable measure of
a variant of Kullback’s symmetric divergence between the
generating model p(y|θ0) and the candidate model p(y|θ̂k).
Yet evaluating Kn(θ0, θ̂k) is not possible, since doing so
requires the knowledge of θ0.
Cavanaugh argues that −2 ln p(yn|θ̂k) is a biased estimator
of Kn(θ0, θ̂k) and proposes an asymptotic bias correction
[5] leading to

KIC = −2 ln p(yn|θ̂k) + 3k. (2)

If we write

Ωn(k, θ0) = Eθ0

{
Kn(θ0, θ̂k)

}
, (3)

one can establish that [5] [6]

Ωn(k, θ0) = Eθ0 {KIC} + o(1).

Motivated by the fact that KIC is only asymptotically un-
biased, a bias corrected version has been proposed in [6]

KICc � −2 ln p(y|θ̂k) +
(k + 1)(3n − k − 2)

n − k − 2
+

k

n − k
(4)

that is exactly unbiased estimator of Kn(θ0, θ̂k) in the con-
text of linear regression, i.e,

Ωn(k, θ0) = Eθ0 {KICc} .

KIC is shown to outperform AIC in large sample linear re-
gression and univariate autoregressive model selection and
leads less frequently to overfitting than AIC and its cor-
rected variant, AICc [2][7]. KICc is found to provide a
better model order choice than KIC for small sample lin-
ear regression and univariate autoregressive model selection
[6]. An extension of KIC for model selection in the pres-
ence of incomplete data has also been developed in [8].

3. DERIVATION OF KICV C

Suppose that the generating model of the data Z1, ..., Zn is
an m-dimensional V AR(k0) process with zero mean

Z ′
t =

k0∑
j=1

Z ′
t−jφ

′
0j + ε′0t t = 1, ..., n, (5)

where Z ′
t = (z1t, ..., zmt), φ′

0j , j = 1, ..., k0 are m×m co-
efficient matrices and ε0t are i.i.d normal random variables
with mean zero and m×m variance-covariance matrix Σ0.
The kth order approximating (or candidate) V AR(k) model
for the data Z1, ..., Zn is

Z ′
t =

k∑
j=1

Z ′
t−jφ

′
j + ε′t t = 1, ..., n, (6)

and the εt are i.i.d normal random variables with mean vec-
tor zero and m × m variance-covariance matrix Σ. The
notations and assumptions adopted in this paper are similar
to the ones of [9].
Lemma. Let

KICvc = −2 ln p(y|θ̂k) +
nm(2km + m + 1)
n − km − m − 1

−
m∑

i=1

nψ

(
n − m(k + 1) + i

2

)
+ nm ln

(n

2

)
, (7)

where ψ is the Euler’s psi function [10]. Then, under the
model (6), KICvc is an exactly unbiased estimator of Kn(β0, β̂k)

Ωn(k, β0) = Eθ0 {KICvc} .

Proof.
Due to the lack of space, only the most importants lines of
proof are given here. For more detail contact the author.
The definition of the notations used in the proof and that are
not defined above can be found in [9].
The expression of the log-likelihood −2 ln p(y|θk) gives

dn(θi, θj) = Eθi {−2 ln p(y|θj)}
= nm ln 2π + n ln(|Σj |) + ntr(Σ−1

j Σi)

+tr{Σ−1
j (βi − βj)′Eθi(X

′X)(βi − βj)}.
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where X and β are defined in [9]. Using this expression in
(1) leads to

Kn(θ0, θ̂k) = n ln(|Σ̂k|) + nm ln(2π) − n ln

(
|Σ̂k|
|Σ0|

)

+ tr{Σ−1
0 (β0 − β̂k)′Eθk

(X ′X)(β0 − β̂k)}
+ tr{Σ̂−1

k (β0 − β̂k)′Eθ0(X
′X)(β0 − β̂k)}

+ ntr(Σ̂−1
k Σ0) + ntr(Σ−1

0 Σ̂k) − nm (8)

where β̂k is the conditional least squares parameter estimate
of β0 and Σ̂k is the maximum likelihood estimate of Σ0.
From results of [11] on β̂k and nΣ̂k, pages 353-354, we
have

Eθ0{tr(Σ̂−1
0 Σk)} ≈ (n − km)

n
m,

and from [12], page 270 (Lemma 7.7.1), we have

Eθ0{tr(Σ̂−1
k Σ0)} ≈ bm, b = n/(n − km − m − 1).

Also, from results of [11][12], we have

Eθ0

{
tr{Σ̂−1

k (β0 − β̂k)′Eθ0(X
′X)(β0 − β̂k)}

}
≈ bkm2,

and

Eθ0

{
tr{Σ−1

0 (β0 − β̂k)′Eθk
(X ′X)(β0 − β̂k)}

}
≈ km2.

By deducing from results of [13], page 100 (Theorem 3.2.15)
and from [10], page 373, we have

Eθ0{ln |nΣ̂k|} = ln |Σ0|+m ln(2)+
m∑

i=1

ψ

(
n − m(k + 1) + i

2

)
.

Using the above results it is straightforward to establish the
result of the lemma.
For easy computation it is possible to use the following ap-
proximation.
Corollary. Let

KICvc = −2 ln p(y|θ̂k) +
nm(2km + m + 1)
n − km − m − 1

+
nm

n − mk − (m − 1)/2
+

2m2k + m2 − m

2
, (9)

then, under the model (6),

Ωn(k, β0) � Eθ0 {KICvc} .

Proof.
By putting α = (k + 1)m − i and using the approximation
result of ψ

(
n−α

2

)
developed in [6], we have

ψ

(
n − m(k + 1) + i

2

)
= ln

(n

2

)
− (k + 1)m − i

n

− 1
n − (k + 1)m + i

.

The sum of the second term of the right hand side is

m∑
i=1

(k + 1)m − i

n
=

2m2k + m2 − m

2n
.

From the following equality

m∑
i=1

n − m(k + 1) + i = m(n − mk − (m − 1)/2),

and assuming that n − m(p + 1) is much larger that m, we
have,

m∑
i=1

1
n − m(k + 1) + i

� m

n − mk − (m − 1)/2
.

Replacing these expressions in the equation (7) of the pro-
posed criterion gives the easy computing approximation cri-
terion of the corollary.
It is worth to mention that asymptotically KICvc converges
to KIC and KICvc(m = 1) = KICc. This motivates the
use of KICvc for small sample applications.

4. SIMULATION RESULTS

Here, the results of a simulation study on the small sample
performance of several criteria for the selection of bivariate
AR model are presented. A thousand simulated realizations
of size n = 50 were generated from a VAR(2) (p0 = 2)
model. The model is bivariate with zero mean, as given by
(6) with m = 2. The VAR(2) model has

Σ0 =
[

1 −0.08
−0.08 1

]
, φ1 =

[
0.50 −0.30
0.20 0.65

]
,

φ2 =
[ −0.50 0.30

0 −0.40

]
.

For each realization, the stepwise least squares algorithm
[14] was used to fit candidate VAR model of orders 1 to 8
and various criteria are used to select from among the candi-
date models. The other criteria considered in this simulation
are AIC, AICc, KIC, KICc and BIC [15]. Table 1 gives
the frequency of model orders selected by the different cri-
teria. It is clear that KICvc performs best, closely followed
by BIC and KICc, while other criteria perform less effec-
tively. This improved selection is due to its finite sample
bias correction.
Figure 1 provides some insight as why KICvc tends to out-
perform KIC and KICc as a selection criterion. Simulated
value of Eθ0{KIC}, Eθ0{KICc} and of Eθ0{KICvc} as
given by equation (9) are obtained by averaging over the
1000 realizations. Ωn(k, β0) is obtained by averaging the
exact expression of KICvc given by equation (7) using the
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digamma function. These averages values are plotted ver-
sus k. Since KIC, KICc, KICvc and Ωn(k, β0) are ob-
tained by adding a non stochastic penalty term to the log
likelihood, the three criteria have the same variance. This
is why in comparison only the mean values are emphasize.
It can be noted that KIC and KICc are biased estimators
of Ωn(k, β0) specially when k increases. This bias is the
major factor for the bad performance of KIC and KICc

compared with KICvc.

Table 1. Frequency of the model order estimated by each crite-
rion for 1000 realizations of sample size N=50.

N order AIC AICc KIC KICc KICvc BIC

50 < p0 1 2 12 44 31 27
50 = p0 748 941 946 955 962 959
50 > p0 251 57 42 1 7 14

1 2 3 4 5 6 7 8
400
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850
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KICvc
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0
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Fig. 1. Averages of KIC, KICc, KICvc and Ωn(k, β0)
for N = 50 and the true model order p0 = 2.

5. CONCLUSION

KICvc outperforms classical criteria in small sample VAR
model selection. As a result, KICvc serves as an effective
tool for selecting a vector autoregressive model of appropri-
ate order when the sample size is small. The bias of KICvc,
in comparison to KIC is reduced leading to improved order
selection as shown by a simulation example.
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